Meridional rank and bridge number of knotted 2-spheres

Jason Joseph, Puttipong Pongtanapaisan
{"title":"Meridional rank and bridge number of knotted 2-spheres","authors":"Jason Joseph, Puttipong Pongtanapaisan","doi":"10.4153/s0008414x23000883","DOIUrl":null,"url":null,"abstract":"<p>The meridional rank conjecture asks whether the bridge number of a knot in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240123135603811-0282:S0008414X23000883:S0008414X23000883_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$S^3$</span></span></img></span></span> is equal to the minimal number of meridians needed to generate the fundamental group of its complement. In this paper, we investigate the analogous conjecture for knotted spheres in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240123135603811-0282:S0008414X23000883:S0008414X23000883_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$S^4$</span></span></img></span></span>. Towards this end, we give a construction to produce classical knots with quotients sending meridians to elements of any finite order in Coxeter groups and alternating groups, which detect their meridional ranks. We establish the equality of bridge number and meridional rank for these knots and knotted spheres obtained from them by twist-spinning. On the other hand, we show that the meridional rank of knotted spheres is not additive under connected sum, so that either bridge number also collapses, or meridional rank is not equal to bridge number for knotted spheres.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The meridional rank conjecture asks whether the bridge number of a knot in Abstract Image$S^3$ is equal to the minimal number of meridians needed to generate the fundamental group of its complement. In this paper, we investigate the analogous conjecture for knotted spheres in Abstract Image$S^4$. Towards this end, we give a construction to produce classical knots with quotients sending meridians to elements of any finite order in Coxeter groups and alternating groups, which detect their meridional ranks. We establish the equality of bridge number and meridional rank for these knots and knotted spheres obtained from them by twist-spinning. On the other hand, we show that the meridional rank of knotted spheres is not additive under connected sum, so that either bridge number also collapses, or meridional rank is not equal to bridge number for knotted spheres.

打结 2 球体的子午等级和桥数
子午线秩猜想问的是,$S^3$ 中一个结的桥数是否等于生成其补集基群所需的最小子午线数。在本文中,我们将研究 $S^4$ 中球结的类似猜想。为此,我们给出了一种构造,以产生经典结,其商数是将经线发送到考克斯特群和交替群中任意有限阶的元素,从而检测它们的经线等级。我们确定了这些结和通过捻旋得到的结球的桥数和子午秩相等。另一方面,我们证明了结球的子午秩在连通和下不具有可加性,因此要么桥数也会崩溃,要么子午秩不等于结球的桥数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信