Multi-linear forms, graphs, and

Pablo Bhowmik, Alex Iosevich, Doowon Koh, Thang Pham
{"title":"Multi-linear forms, graphs, and","authors":"Pablo Bhowmik, Alex Iosevich, Doowon Koh, Thang Pham","doi":"10.4153/s0008414x2300086x","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}T_Kf(x)=\\int K(x,y) f(y) d\\mu(y),\\end{align*} $$</span></span></img></span>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f: X \\to {\\Bbb R}$</span></span></img></span></span>, <span>X</span> a set, finite or infinite, and <span>K</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> denote a suitable kernel and a measure, respectively. Given a connected ordered graph <span>G</span> on <span>n</span> vertices, consider the multi-linear form <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}\\Lambda_G(f_1,f_2, \\dots, f_n)=\\int_{x^1, \\dots, x^n \\in X} \\ \\prod_{(i,j) \\in {\\mathcal E}(G)} K(x^i,x^j) \\prod_{l=1}^n f_l(x^l) d\\mu(x^l),\\end{align*} $$</span></span></img></span>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal E}(G)$</span></span></img></span></span> is the edge set of <span>G</span>. Define <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Lambda _G(p_1, \\ldots , p_n)$</span></span></img></span></span> as the smallest constant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$C&gt;0$</span></span></img></span></span> such that the inequality <span><span>(0.1)</span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqn1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align} \\Lambda_G(f_1, \\dots, f_n) \\leq C \\prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \\mu)} \\end{align} $$</span></span></img></span>holds for all nonnegative real-valued functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$f_i$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$1\\le i\\le n$</span></span></img></span></span>, on <span>X</span>. The basic question is, how does the structure of <span>G</span> and the mapping properties of the operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$T_K$</span></span></img></span></span> influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$X={\\Bbb F}_q^d$</span></span></img></span></span>, the <span>d</span>-dimensional vector space over the field with <span>q</span> elements, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$K(x^i,x^j)$</span></span></img></span></span> is the indicator function of the sphere evaluated at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$x^i-x^j$</span></span></img></span></span>, and connected graphs <span>G</span> with at most four vertices.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2300086x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let Abstract Image$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where Abstract Image$f: X \to {\Bbb R}$, X a set, finite or infinite, and K and Abstract Image$\mu $ denote a suitable kernel and a measure, respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form Abstract Image$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where Abstract Image${\mathcal E}(G)$ is the edge set of G. Define Abstract Image$\Lambda _G(p_1, \ldots , p_n)$ as the smallest constant Abstract Image$C>0$ such that the inequality (0.1)Abstract Image$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions Abstract Image$f_i$, Abstract Image$1\le i\le n$, on X. The basic question is, how does the structure of G and the mapping properties of the operator Abstract Image$T_K$ influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case Abstract Image$X={\Bbb F}_q^d$, the d-dimensional vector space over the field with q elements, Abstract Image$K(x^i,x^j)$ is the indicator function of the sphere evaluated at Abstract Image$x^i-x^j$, and connected graphs G with at most four vertices.

多线性形式、图形和
本文旨在介绍并研究以下图论范式。让 $$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*}$$where $f:X 是一个有限或无限的集合,而 K 和 $\mu $ 分别表示一个合适的核和一个度量。给定 n 个顶点上的连通有序图 G,考虑多线性形式 $$ \begin{align*}\Lambda_G(f_1,f_2, \dots、f_n)=\int_{x^1,\dots, x^n \in X} \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*}定义 $\Lambda _G(p_1,\ldots,p_n)$ 为最小常数 $C>0$,使得不等式 (0.1)$$ \begin{align}。\Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions $f_i$, $1\le i\le n$, on X.基本问题是,G 的结构和算子 $T_K$ 的映射性质如何影响(0.1)中的陡峭指数。本文主要在以下情况下研究这个问题:$X={\Bbb F}_q^d$,即具有 q 个元素的域上 d 维向量空间;$K(x^i,x^j)$ 是在 $x^i-x^j$ 处求值的球面指示函数;以及最多有四个顶点的连通图 G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信