Pablo Bhowmik, Alex Iosevich, Doowon Koh, Thang Pham
{"title":"Multi-linear forms, graphs, and","authors":"Pablo Bhowmik, Alex Iosevich, Doowon Koh, Thang Pham","doi":"10.4153/s0008414x2300086x","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}T_Kf(x)=\\int K(x,y) f(y) d\\mu(y),\\end{align*} $$</span></span></img></span>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f: X \\to {\\Bbb R}$</span></span></img></span></span>, <span>X</span> a set, finite or infinite, and <span>K</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> denote a suitable kernel and a measure, respectively. Given a connected ordered graph <span>G</span> on <span>n</span> vertices, consider the multi-linear form <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}\\Lambda_G(f_1,f_2, \\dots, f_n)=\\int_{x^1, \\dots, x^n \\in X} \\ \\prod_{(i,j) \\in {\\mathcal E}(G)} K(x^i,x^j) \\prod_{l=1}^n f_l(x^l) d\\mu(x^l),\\end{align*} $$</span></span></img></span>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal E}(G)$</span></span></img></span></span> is the edge set of <span>G</span>. Define <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Lambda _G(p_1, \\ldots , p_n)$</span></span></img></span></span> as the smallest constant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$C>0$</span></span></img></span></span> such that the inequality <span><span>(0.1)</span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_eqn1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align} \\Lambda_G(f_1, \\dots, f_n) \\leq C \\prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \\mu)} \\end{align} $$</span></span></img></span>holds for all nonnegative real-valued functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$f_i$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$1\\le i\\le n$</span></span></img></span></span>, on <span>X</span>. The basic question is, how does the structure of <span>G</span> and the mapping properties of the operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$T_K$</span></span></img></span></span> influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$X={\\Bbb F}_q^d$</span></span></img></span></span>, the <span>d</span>-dimensional vector space over the field with <span>q</span> elements, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$K(x^i,x^j)$</span></span></img></span></span> is the indicator function of the sphere evaluated at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240122134123249-0119:S0008414X2300086X:S0008414X2300086X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$x^i-x^j$</span></span></img></span></span>, and connected graphs <span>G</span> with at most four vertices.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2300086x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let $$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where $f: X \to {\Bbb R}$, X a set, finite or infinite, and K and $\mu $ denote a suitable kernel and a measure, respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form $$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where ${\mathcal E}(G)$ is the edge set of G. Define $\Lambda _G(p_1, \ldots , p_n)$ as the smallest constant $C>0$ such that the inequality (0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions $f_i$, $1\le i\le n$, on X. The basic question is, how does the structure of G and the mapping properties of the operator $T_K$ influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case $X={\Bbb F}_q^d$, the d-dimensional vector space over the field with q elements, $K(x^i,x^j)$ is the indicator function of the sphere evaluated at $x^i-x^j$, and connected graphs G with at most four vertices.