Homogenisation of nonlinear blood flow in periodic networks: the limit of small haematocrit heterogeneity

Y. Ben-Ami, B. D. Wood, J. M. Pitt-Francis, P. K. Maini, H. M. Byrne
{"title":"Homogenisation of nonlinear blood flow in periodic networks: the limit of small haematocrit heterogeneity","authors":"Y. Ben-Ami, B. D. Wood, J. M. Pitt-Francis, P. K. Maini, H. M. Byrne","doi":"arxiv-2401.10932","DOIUrl":null,"url":null,"abstract":"In this work we develop a homogenisation methodology to upscale mathematical\ndescriptions of microcirculatory blood flow from the microscale (where\nindividual vessels are resolved) to the macroscopic (or tissue) scale. Due to\nthe assumed two-phase nature of blood and specific features of red blood cells\n(RBCs), mathematical models for blood flow in the microcirculation are highly\nnonlinear, coupling the flow and RBC concentrations (haematocrit). In contrast\nto previous works which accomplished blood-flow homogenisation by assuming that\nthe haematocrit level remains constant, here we allow for spatial heterogeneity\nin the haematocrit concentration and thus begin with a nonlinear microscale\nmodel. We simplify the analysis by considering the limit of small haematocrit\nheterogeneity which prevails when variations in haematocrit concentration\nbetween neighbouring vessels are small. Homogenisation results in a system of\ncoupled, nonlinear partial differential equations describing the flow and\nhaematocrit transport at the macroscale, in which a nonlinear Darcy-type model\nrelates the flow and pressure gradient via a haematocrit-dependent permeability\ntensor. During the analysis we obtain further that haematocrit transport at the\nmacroscale is governed by a purely advective equation. Applying the theory to\nparticular examples of two- and three-dimensional geometries of periodic\nnetworks, we calculate the effective permeability tensor associated with blood\nflow in these vascular networks. We demonstrate how the statistical\ndistribution of vessel lengths and diameters, together with the average\nhaematocrit level, affect the statistical properties of the macroscopic\npermeability tensor. These data can be used to simulate blood flow and\nhaematocrit transport at the macroscale.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.10932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we develop a homogenisation methodology to upscale mathematical descriptions of microcirculatory blood flow from the microscale (where individual vessels are resolved) to the macroscopic (or tissue) scale. Due to the assumed two-phase nature of blood and specific features of red blood cells (RBCs), mathematical models for blood flow in the microcirculation are highly nonlinear, coupling the flow and RBC concentrations (haematocrit). In contrast to previous works which accomplished blood-flow homogenisation by assuming that the haematocrit level remains constant, here we allow for spatial heterogeneity in the haematocrit concentration and thus begin with a nonlinear microscale model. We simplify the analysis by considering the limit of small haematocrit heterogeneity which prevails when variations in haematocrit concentration between neighbouring vessels are small. Homogenisation results in a system of coupled, nonlinear partial differential equations describing the flow and haematocrit transport at the macroscale, in which a nonlinear Darcy-type model relates the flow and pressure gradient via a haematocrit-dependent permeability tensor. During the analysis we obtain further that haematocrit transport at the macroscale is governed by a purely advective equation. Applying the theory to particular examples of two- and three-dimensional geometries of periodic networks, we calculate the effective permeability tensor associated with blood flow in these vascular networks. We demonstrate how the statistical distribution of vessel lengths and diameters, together with the average haematocrit level, affect the statistical properties of the macroscopic permeability tensor. These data can be used to simulate blood flow and haematocrit transport at the macroscale.
周期性网络中非线性血流的均质化:小血细胞比容异质性的极限
在这项工作中,我们开发了一种均质化方法,将微循环血流的数学描述从微观尺度(解析单个血管)提升到宏观(或组织)尺度。由于血液的假定两相性质和红细胞(RBC)的特殊性,微循环血流数学模型是高度非线性的,将血流和红细胞浓度(血细胞比容)联系在一起。以前的研究假设血细胞比容水平保持不变,从而实现了血流的均质化,与此不同的是,我们允许血细胞比容浓度存在空间异质性,因此从非线性微观模型入手。我们考虑了血细胞比容异质性较小的极限,从而简化了分析,当相邻血管之间的血细胞比容浓度变化较小时,这种异质性较小。均质化的结果是一个耦合的非线性偏微分方程系统,描述了宏观尺度上的流动和血细胞比容传输,其中一个非线性达西模型通过依赖于血细胞比容的渗透性传感器将流动和压力梯度联系起来。在分析过程中,我们进一步发现血细胞比容在宏观尺度上的传输是由一个纯平流方程控制的。将该理论应用于周期性网络的二维和三维几何图形的具体实例中,我们计算了这些血管网络中与血流相关的有效渗透性张量。我们展示了血管长度和直径的统计分布以及平均血细胞比容水平如何影响宏观渗透性张量的统计特性。这些数据可用于在宏观尺度上模拟血流和血细胞比容的传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信