A threshold for the best two-term underapproximation by Egyptian fractions

IF 0.5 4区 数学 Q3 MATHEMATICS
Hùng Việt Chu
{"title":"A threshold for the best two-term underapproximation by Egyptian fractions","authors":"Hùng Việt Chu","doi":"10.1016/j.indag.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span><span> be the greedy algorithm that, for each </span><span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, produces an infinite sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> satisfying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. For natural numbers <span><math><mrow><mi>p</mi><mo>&lt;</mo><mi>q</mi></mrow></math></span>, let <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> denote the smallest positive integer </span><span><math><mi>j</mi></math></span> such that <span><math><mi>p</mi></math></span> divides <span><math><mrow><mi>q</mi><mo>+</mo><mi>j</mi></mrow></math></span>. Continuing Nathanson’s study of two-term underapproximations, we show that whenever <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩽</mo><mn>3</mn></mrow></math></span>, <span><math><mi>G</mi></math></span> gives the (unique) best two-term underapproximation of <span><math><mrow><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>; i.e., if <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span> for some <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></mrow></math></span>, then <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. However, the same conclusion fails for every <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩾</mo><mn>4</mn></mrow></math></span>. Next, we study stepwise underapproximation by <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> be the <span><math><mi>m</mi></math></span>th error term. We compare <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> to a superior underapproximation of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>\n(<span><math><mrow><mi>N</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>⩾</mo><mn>2</mn></mrow></msub></mrow></math></span>), and characterize when <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. One characterization is <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mi>N</mi><msubsup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span>. Hence, for rational <span><math><mi>θ</mi></math></span>, we only have <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for finitely many <span><math><mi>m</mi></math></span>. However, there are irrational numbers such that <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for all <span><math><mi>m</mi></math></span>. Along the way, various auxiliary results are encountered.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be the greedy algorithm that, for each θ(0,1], produces an infinite sequence of positive integers (an)n=1 satisfying n=11/an=θ. For natural numbers p<q, let Υ(p,q) denote the smallest positive integer j such that p divides q+j. Continuing Nathanson’s study of two-term underapproximations, we show that whenever Υ(p,q)3, G gives the (unique) best two-term underapproximation of p/q; i.e., if 1/x1+1/x2<p/q for some x1,x2N, then 1/x1+1/x21/a1+1/a2. However, the same conclusion fails for every Υ(p,q)4. Next, we study stepwise underapproximation by G. Let em=θn=1m1/an be the mth error term. We compare 1/am to a superior underapproximation of em1, denoted by N/bm (NN2), and characterize when 1/am=N/bm. One characterization is am+1Nam2am+1. Hence, for rational θ, we only have 1/am=N/bm for finitely many m. However, there are irrational numbers such that 1/am=N/bm for all m. Along the way, various auxiliary results are encountered.

通过埃及分数实现最佳两期欠逼近的阈值
设 G 是贪心算法,对于每个 θ∈(0,1],产生满足 ∑n=1∞1/an=θ 的正整数 (an)n=1∞ 的无穷序列。对于自然数 p<q,让 Υ(p,q) 表示使 p 平分 q+j 的最小正整数 j。延续纳坦森对两期欠逼近的研究,我们证明,只要 Υ(p,q)⩽3,G 就给出 p/q 的(唯一)最佳两期欠逼近;也就是说,如果对于某个 x1,x2∈N,1/x1+1/x2<p/q,那么 1/x1+1/x2⩽1/a1+1/a2。然而,对于每个 Υ(p,q)⩾4,同样的结论都不成立。让 em=θ-∑n=1m1/an 为第 m 个误差项。我们将 1/am 与 em-1 的优越欠逼近进行比较,用 N/bm 表示(N∈N⩾2),并描述 1/am=N/bm 时的特征。其中一个特征是 am+1⩾Nam2-am+1。因此,对于有理数 θ,我们只有在有限多个 m 时才有 1/am=N/bm。然而,存在无理数,使得所有 m 都有 1/am=N/bm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信