{"title":"A threshold for the best two-term underapproximation by Egyptian fractions","authors":"Hùng Việt Chu","doi":"10.1016/j.indag.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span><span> be the greedy algorithm that, for each </span><span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, produces an infinite sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> satisfying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. For natural numbers <span><math><mrow><mi>p</mi><mo><</mo><mi>q</mi></mrow></math></span>, let <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> denote the smallest positive integer </span><span><math><mi>j</mi></math></span> such that <span><math><mi>p</mi></math></span> divides <span><math><mrow><mi>q</mi><mo>+</mo><mi>j</mi></mrow></math></span>. Continuing Nathanson’s study of two-term underapproximations, we show that whenever <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩽</mo><mn>3</mn></mrow></math></span>, <span><math><mi>G</mi></math></span> gives the (unique) best two-term underapproximation of <span><math><mrow><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>; i.e., if <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span> for some <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></mrow></math></span>, then <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. However, the same conclusion fails for every <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩾</mo><mn>4</mn></mrow></math></span>. Next, we study stepwise underapproximation by <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> be the <span><math><mi>m</mi></math></span>th error term. We compare <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> to a superior underapproximation of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>\n(<span><math><mrow><mi>N</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>⩾</mo><mn>2</mn></mrow></msub></mrow></math></span>), and characterize when <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. One characterization is <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mi>N</mi><msubsup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span>. Hence, for rational <span><math><mi>θ</mi></math></span>, we only have <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for finitely many <span><math><mi>m</mi></math></span>. However, there are irrational numbers such that <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for all <span><math><mi>m</mi></math></span>. Along the way, various auxiliary results are encountered.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 350-375"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the greedy algorithm that, for each , produces an infinite sequence of positive integers satisfying . For natural numbers , let denote the smallest positive integer such that divides . Continuing Nathanson’s study of two-term underapproximations, we show that whenever , gives the (unique) best two-term underapproximation of ; i.e., if for some , then . However, the same conclusion fails for every . Next, we study stepwise underapproximation by . Let be the th error term. We compare to a superior underapproximation of , denoted by
(), and characterize when . One characterization is . Hence, for rational , we only have for finitely many . However, there are irrational numbers such that for all . Along the way, various auxiliary results are encountered.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.