{"title":"Ranks of elliptic curves in cyclic sextic extensions of Q","authors":"Hershy Kisilevsky , Masato Kuwata","doi":"10.1016/j.indag.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>For an elliptic curve </span><span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> we show that there are infinitely many cyclic sextic extensions <span><math><mrow><mi>K</mi><mo>/</mo><mi>Q</mi></mrow></math></span> such that the Mordell–Weil group <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> has rank greater than the subgroup of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> generated by all the <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> for the proper subfields <span><math><mrow><mi>F</mi><mo>⊂</mo><mi>K</mi></mrow></math></span>. For certain curves <span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> we show that the number of such fields <span><math><mi>K</mi></math></span> of conductor less than <span><math><mi>X</mi></math></span> is <span><math><mrow><mo>≫</mo><msqrt><mrow><mi>X</mi></mrow></msqrt></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 728-743"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an elliptic curve we show that there are infinitely many cyclic sextic extensions such that the Mordell–Weil group has rank greater than the subgroup of generated by all the for the proper subfields . For certain curves we show that the number of such fields of conductor less than is .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.