The dynamics of cantilevered structures subject to axial flow

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Michael P. Païdoussis
{"title":"The dynamics of cantilevered structures subject to axial flow","authors":"Michael P. Païdoussis","doi":"10.1016/j.jfluidstructs.2024.104075","DOIUrl":null,"url":null,"abstract":"<div><p><span>The dynamics of slender cantilevered cylinders subjected to internal or external axial flow has been studied extensively from the 1960s onwards. In the early studies, the flow was directed from the clamped end towards the free end of the cantilever. The same is true for cantilevered plates (or “flags”) in axial flow. More recently, however, the dynamics in reverse axial flow, i.e., flow directed from the free towards the clamped end, has received attention, partly as curiosity-driven research, but also because of </span>engineering applications<span><span>. For example, cantilevered pipes aspirating fluid are used in ocean mining, cantilevered cylinders in reverse axial flow may be found as control rods in nuclear reactors, and cantilevered plates in reverse axial flow are a candidate system for </span>energy harvesting.</span></p><p>The present paper provides a summary of the dynamics of these systems in conventional and reverse axial flow and compares their dynamical behaviour. For example, cantilevered cylinders in conventional axial flow are subject to a weak static divergence (buckling) at sufficiently high flow velocities, and to vigorous flutter at higher flow velocities. Cylinders in reverse axial flow, on the other hand, are subject to weak flutter at low flow velocities and to a large amplitude static divergence at higher flows. In the first case the dynamics is sensitive to the shape of the free end, and in the second hardly at all.</p><p>The differences in the dynamical behaviour in reverse flow <em>vis-à-vis</em> conventional flow for pipes and plates, not so neatly reversed as for cylinders, are also discussed, and some general conclusions drawn for all three systems, regarding similarities and differences in the dynamics and sensitivity to free-end shape arising from the direction of fluid flow.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000100","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of slender cantilevered cylinders subjected to internal or external axial flow has been studied extensively from the 1960s onwards. In the early studies, the flow was directed from the clamped end towards the free end of the cantilever. The same is true for cantilevered plates (or “flags”) in axial flow. More recently, however, the dynamics in reverse axial flow, i.e., flow directed from the free towards the clamped end, has received attention, partly as curiosity-driven research, but also because of engineering applications. For example, cantilevered pipes aspirating fluid are used in ocean mining, cantilevered cylinders in reverse axial flow may be found as control rods in nuclear reactors, and cantilevered plates in reverse axial flow are a candidate system for energy harvesting.

The present paper provides a summary of the dynamics of these systems in conventional and reverse axial flow and compares their dynamical behaviour. For example, cantilevered cylinders in conventional axial flow are subject to a weak static divergence (buckling) at sufficiently high flow velocities, and to vigorous flutter at higher flow velocities. Cylinders in reverse axial flow, on the other hand, are subject to weak flutter at low flow velocities and to a large amplitude static divergence at higher flows. In the first case the dynamics is sensitive to the shape of the free end, and in the second hardly at all.

The differences in the dynamical behaviour in reverse flow vis-à-vis conventional flow for pipes and plates, not so neatly reversed as for cylinders, are also discussed, and some general conclusions drawn for all three systems, regarding similarities and differences in the dynamics and sensitivity to free-end shape arising from the direction of fluid flow.

受轴向流影响的悬臂结构的动力学特性
从 20 世纪 60 年代起,人们就开始广泛研究细长悬臂圆柱体在内部或外部轴向流作用下的动力学特性。在早期的研究中,流动是从夹紧端流向悬臂的自由端。悬臂板(或 "旗帜")在轴向流动时也是如此。然而,最近,反向轴向流动的动力学,即流动从自由端流向夹紧端,受到了关注,部分原因是好奇心驱动的研究,但也有工程应用的原因。例如,吸入流体的悬臂管可用于海洋采矿,反向轴向流中的悬臂圆柱体可用作核反应堆中的控制棒,反向轴向流中的悬臂板是能量收集的候选系统。例如,传统轴向流中的悬臂圆柱体在足够高的流速下会出现微弱的静态发散(屈曲),而在更高的流速下则会出现剧烈的飘动。另一方面,反向轴流中的圆柱体在低流速时会出现微弱的飘动,而在高流速时则会出现大振幅的静态发散。我们还讨论了管道和板材在反向流动中的动力学行为与传统流动中的动力学行为之间的差异,并就流体流动方向引起的动力学和对自由端形状的敏感性的异同,为所有这三个系统得出了一些一般性结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信