Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Tianyi Liu, Yifan Lin, Enlu Zhou
{"title":"Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data","authors":"Tianyi Liu, Yifan Lin, Enlu Zhou","doi":"10.1137/22m1478951","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 389-418, March 2024. <br/> Abstract. We consider stochastic optimization under distributional uncertainty, where the unknown distributional parameter is estimated from streaming data that arrive sequentially over time. Moreover, data may depend on the decision at the time when they are generated. For both decision-independent and decision-dependent uncertainties, we propose an approach to jointly estimate the distributional parameter via Bayesian posterior distribution and update the decision by applying stochastic gradient descent (SGD) on the Bayesian average of the objective function. Our approach converges asymptotically over time and achieves the convergence rates of classical SGD in the decision-independent case. We demonstrate the empirical performance of our approach on both synthetic test problems and a classical newsvendor problem.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"214 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1478951","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 389-418, March 2024.
Abstract. We consider stochastic optimization under distributional uncertainty, where the unknown distributional parameter is estimated from streaming data that arrive sequentially over time. Moreover, data may depend on the decision at the time when they are generated. For both decision-independent and decision-dependent uncertainties, we propose an approach to jointly estimate the distributional parameter via Bayesian posterior distribution and update the decision by applying stochastic gradient descent (SGD) on the Bayesian average of the objective function. Our approach converges asymptotically over time and achieves the convergence rates of classical SGD in the decision-independent case. We demonstrate the empirical performance of our approach on both synthetic test problems and a classical newsvendor problem.
利用流输入数据进行随机优化的贝叶斯随机梯度下降法
SIAM 优化期刊》,第 34 卷,第 1 期,第 389-418 页,2024 年 3 月。 摘要。我们考虑分布不确定性下的随机优化,其中未知的分布参数是从随时间顺序到达的流数据中估计出来的。此外,数据在生成时可能取决于决策。对于与决策无关和与决策有关的不确定性,我们提出了一种通过贝叶斯后验分布联合估计分布参数的方法,并通过对目标函数的贝叶斯平均值应用随机梯度下降(SGD)来更新决策。我们的方法随时间渐进收敛,并在决策无关的情况下达到经典 SGD 的收敛率。我们在合成测试问题和经典新闻供应商问题上演示了我们方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信