Cohomological Hall algebras and perverse coherent sheaves on toric Calabi–Yau $3$-folds

IF 1.2 3区 数学 Q1 MATHEMATICS
Miroslav Rapčák, Yan Soibelman, Yaping Yang, Gufang Zhao
{"title":"Cohomological Hall algebras and perverse coherent sheaves on toric Calabi–Yau $3$-folds","authors":"Miroslav Rapčák, Yan Soibelman, Yaping Yang, Gufang Zhao","doi":"10.4310/cntp.2023.v17.n4.a2","DOIUrl":null,"url":null,"abstract":"We study the Drinfeld double of the (equivariant spherical) Cohomological Hall algebra in the sense of Kontsevich and Soibelman, associated to a smooth toric Calabi–Yau $3$-fold $X$. By general reasons, the COHA acts on the cohomology of the moduli spaces of certain perverse coherent systems on $X$ via “raising operators”. Conjecturally the COHA action extends to an action of the Drinfeld double by adding the “lowering operators”. In this paper, we show that the Drinfeld double is a generalization of the notion of the Cartan doubled Yangian defined earlier by Finkelberg and others. We extend this “$3d$ Calabi–Yau perspective” on the Lie theory furthermore by associating a root system to certain families of $X$. We formulate a conjecture that the above-mentioned action of the Drinfeld double factors through a shifted Yangian of the root system. The shift is explicitly determined by the moduli problem and the choice of stability conditions, and is expressed explicitly in terms of an intersection number in $X$. We check the conjectures in several examples, including a special case of an earlier conjecture of Costello.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"33 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Drinfeld double of the (equivariant spherical) Cohomological Hall algebra in the sense of Kontsevich and Soibelman, associated to a smooth toric Calabi–Yau $3$-fold $X$. By general reasons, the COHA acts on the cohomology of the moduli spaces of certain perverse coherent systems on $X$ via “raising operators”. Conjecturally the COHA action extends to an action of the Drinfeld double by adding the “lowering operators”. In this paper, we show that the Drinfeld double is a generalization of the notion of the Cartan doubled Yangian defined earlier by Finkelberg and others. We extend this “$3d$ Calabi–Yau perspective” on the Lie theory furthermore by associating a root system to certain families of $X$. We formulate a conjecture that the above-mentioned action of the Drinfeld double factors through a shifted Yangian of the root system. The shift is explicitly determined by the moduli problem and the choice of stability conditions, and is expressed explicitly in terms of an intersection number in $X$. We check the conjectures in several examples, including a special case of an earlier conjecture of Costello.
环卡拉比约 3$ 折叠上的同调霍尔代数和反相干剪切
我们研究康采维奇和索伊贝尔曼意义上的(等变球形)同调霍尔代数的德林费尔德双重,它与光滑环状卡拉比优 3 美元折叠 $X$ 相关联。由于一般原因,COHA 通过 "提升算子 "作用于 $X$ 上某些反相干系统的模空间的同调。根据猜想,通过添加 "降低算子",COHA 作用扩展为 Drinfeld double 的作用。在本文中,我们证明 Drinfeld double 是 Finkelberg 等人早先定义的 Cartan double Yangian 概念的广义化。我们将根系统与某些 $X$ 族联系起来,从而进一步扩展了这种 "3d$ Calabi-Yau 视角"。我们提出了一个猜想,即上述德林菲尔德双重作用通过根系统的移动杨格因子来实现。这种移动是由模量问题和稳定性条件的选择明确决定的,并用 $X$ 中的交集数明确表示。我们在几个例子中检验了猜想,包括科斯特洛早期猜想的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信