KumChol Kim, Wenjing Zhang, Peng Chen, Chengjun Li, Bin Li
{"title":"Identification of potent inhibitors targeting <i>Tribolium castaneum</i> GSTe2 via structure-based screening and molecular dynamics simulation.","authors":"KumChol Kim, Wenjing Zhang, Peng Chen, Chengjun Li, Bin Li","doi":"10.1080/07391102.2024.2306499","DOIUrl":null,"url":null,"abstract":"<p><p>Red flour beetle, <i>Tribolium castaneum</i>, has a major negative impact during storage of agricultural products and reveals the negative impacts on human health. Insect-specific epsilon glutathione S-transferase (GSTs) which requires reduced glutathione (GSH) as an essential substrate not only develop insecticide resistance but also play important role in insect metamorphosis. Inhibition of the insect metamorphosis and the development of insecticide resistance could play an important role in pest control, so <i>T. castaneum</i> GSTe2 (TcGSTe2) in our previous study could be an important target protein for this purpose. This study aimed to find a potential TcGSTe2 inhibitors through <i>in silico</i> mothods, including molecular modeling, molecular docking, ADMET assay, followed by molecular dynamics (MD) simulation, principal component analysis and MM/PBSA analysis. The results showed that ZINC000169293362 and ZINC000095566957 were selected as potential TcGSTe2 inhibitors with high-binding affinity and without any toxicity from 3618 of GSH-like compounds obtained from ZINC database. MD simulation results revealed that TcGSTe2-ZINC000169293362 had more stability than that of reference GSH. Moreover, TcGSTe2-ZINC000169293362 and TcGSTe2-ZINC000095566957 showed lower binding free energy (-27.53 ± 0.16 kcal/mol and -18.83 ± 0.15 kcal/mol, respectively) compared with TcGSTe2-GSH (-8.90 ± 0.30 kcal/mol). This study could provide new insight into reduction of insecticide resistance and be used to design new inhibitors of insect GSTs.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"5074-5085"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2306499","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Red flour beetle, Tribolium castaneum, has a major negative impact during storage of agricultural products and reveals the negative impacts on human health. Insect-specific epsilon glutathione S-transferase (GSTs) which requires reduced glutathione (GSH) as an essential substrate not only develop insecticide resistance but also play important role in insect metamorphosis. Inhibition of the insect metamorphosis and the development of insecticide resistance could play an important role in pest control, so T. castaneum GSTe2 (TcGSTe2) in our previous study could be an important target protein for this purpose. This study aimed to find a potential TcGSTe2 inhibitors through in silico mothods, including molecular modeling, molecular docking, ADMET assay, followed by molecular dynamics (MD) simulation, principal component analysis and MM/PBSA analysis. The results showed that ZINC000169293362 and ZINC000095566957 were selected as potential TcGSTe2 inhibitors with high-binding affinity and without any toxicity from 3618 of GSH-like compounds obtained from ZINC database. MD simulation results revealed that TcGSTe2-ZINC000169293362 had more stability than that of reference GSH. Moreover, TcGSTe2-ZINC000169293362 and TcGSTe2-ZINC000095566957 showed lower binding free energy (-27.53 ± 0.16 kcal/mol and -18.83 ± 0.15 kcal/mol, respectively) compared with TcGSTe2-GSH (-8.90 ± 0.30 kcal/mol). This study could provide new insight into reduction of insecticide resistance and be used to design new inhibitors of insect GSTs.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.