Pan Zhao, Lin Xia, Dan Chen, Wei Xu, Huanping Guo, Yinying Xu, Bingbing Yan, Xiao Wu, Yuxia Li, Yunfang Zhang, Xi Zhang
{"title":"METTL1 mediated tRNA m<sup>7</sup>G modification promotes leukaemogenesis of AML via tRNA regulated translational control.","authors":"Pan Zhao, Lin Xia, Dan Chen, Wei Xu, Huanping Guo, Yinying Xu, Bingbing Yan, Xiao Wu, Yuxia Li, Yunfang Zhang, Xi Zhang","doi":"10.1186/s40164-024-00477-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m<sup>7</sup>G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined.</p><p><strong>Methods: </strong>METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements.</p><p><strong>Results: </strong>METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m<sup>7</sup>G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells.</p><p><strong>Conclusions: </strong>Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00477-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m7G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined.
Methods: METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements.
Results: METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m7G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells.
Conclusions: Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.