Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki
{"title":"Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate.","authors":"Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki","doi":"10.1248/bpb.b23-00789","DOIUrl":null,"url":null,"abstract":"<p><p>Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl<sub>4</sub>. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00789","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl4. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.

开发用于光热疗法的中空金纳米粒子及其与二乙基二硫代氨基甲酸铜结合对胶质瘤细胞系的细胞毒性作用
金基纳米粒子有望成为功能性纳米药物,包括在化疗的同时结合光热效应治疗癌症。在此,我们合成了空心金纳米粒子(HGNPs),其在近红外(NIR)区域表现出高效的光吸收能力。我们探索了几种合成条件,得到了直径约 95-135 nm、吸光范围约 600-720 nm 的单分散 HGNPs。在使用高浓度 HAuCl4 制备 HGNPs 时,HGNPs 是中空的,表面具有突出结构。牺牲的 AgCl 模板和金纳米粒子同时成核可能会影响所制备的 HGNPs。二乙基二硫代氨基甲酸盐(DDTC)是由双硫嘧啶代谢而来,是目前备受关注的一种再利用药物。我们在此证实了 DDTC-Cu 在体外对大鼠 C6 脑胶质瘤细胞的细胞毒性作用。单独的 HGNPs 具有生物相容性,几乎没有细胞毒性,而 DDTC-Cu 和 HGNPs 的混合物则具有剂量依赖性的细胞毒性。在近红外激光照射下,HGNPs 的温度升高。在近红外激光照射下,HGNPs 的光热效应对 C6 细胞产生细胞毒性,并且与照射时间有关。HGNPs与DDTC-Cu的联合光热疗法非常有效,表明这种联合疗法有望成为未来的胶质瘤疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信