Xiangyu Fan, Jiaxin Lia, Yingzhe Wang, Yingsha Qu, Hao Li, Keming Qu, Z. Cui
{"title":"A Hybrid Neural Network Model For Predicting The Nitrate Concentration In The Recirculating Aquaculture System","authors":"Xiangyu Fan, Jiaxin Lia, Yingzhe Wang, Yingsha Qu, Hao Li, Keming Qu, Z. Cui","doi":"10.48550/arXiv.2401.01491","DOIUrl":null,"url":null,"abstract":"This study was groundbreaking in its application of neural network models for nitrate management in the Recirculating Aquaculture System (RAS). A hybrid neural network model was proposed, which accurately predicted daily nitrate concentration and its trends using six water quality parameters. We conducted a 105-day aquaculture experiment, during which we collected 450 samples from five sets of RAS to train our model (C-L-A model) which incorporates Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-Attention. Furthermore, we obtained 90 samples from a standalone RAS as the testing data to evaluate the performance of the model in practical applications. The experimental results proved that the C-L-A model accurately predicted nitrate concentration in RAS and maintained good performance even with a reduced proportion of training data. We recommend using water quality parameters from the past 7 days to forecast future nitrate concentration, as this timeframe allows the model to achieve maximum generalization capability. Additionally, we compared the performance of the C-L-A model with three basic neural network models (CNN, LSTM, self-Attention) as well as three hybrid neural network models (CNN-LSTM, CNN-Attention, LSTM-Attention). The results demonstrated that the C-L-A model (R2=0.956) significantly outperformed the other neural network models (R2=0.901-0.927). Our study suggests that the utilization of neural network models, specifically the C-L-A model, could potentially assist the RAS industry in conserving resources for daily nitrate monitoring.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.01491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study was groundbreaking in its application of neural network models for nitrate management in the Recirculating Aquaculture System (RAS). A hybrid neural network model was proposed, which accurately predicted daily nitrate concentration and its trends using six water quality parameters. We conducted a 105-day aquaculture experiment, during which we collected 450 samples from five sets of RAS to train our model (C-L-A model) which incorporates Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-Attention. Furthermore, we obtained 90 samples from a standalone RAS as the testing data to evaluate the performance of the model in practical applications. The experimental results proved that the C-L-A model accurately predicted nitrate concentration in RAS and maintained good performance even with a reduced proportion of training data. We recommend using water quality parameters from the past 7 days to forecast future nitrate concentration, as this timeframe allows the model to achieve maximum generalization capability. Additionally, we compared the performance of the C-L-A model with three basic neural network models (CNN, LSTM, self-Attention) as well as three hybrid neural network models (CNN-LSTM, CNN-Attention, LSTM-Attention). The results demonstrated that the C-L-A model (R2=0.956) significantly outperformed the other neural network models (R2=0.901-0.927). Our study suggests that the utilization of neural network models, specifically the C-L-A model, could potentially assist the RAS industry in conserving resources for daily nitrate monitoring.