Arivazhagan S, Newlin Shebiah Russel, Saranyaa M, Shanmuga Priya R
{"title":"CNN-based Approach for Robust Detection of Copy-Move Forgery in Images","authors":"Arivazhagan S, Newlin Shebiah Russel, Saranyaa M, Shanmuga Priya R","doi":"10.4114/intartif.vol27iss73pp80-91","DOIUrl":null,"url":null,"abstract":"With the rise of high-quality forged images on social media and other platforms, there is a need for algorithms that can recognize the originality. Detecting copy-move forgery is essential for ensuring the authenticity and integrity of digital images, preventing fraud and deception, and upholding the law. Copy-move forgery is the act of duplicating and pasting a portion of an image to another location within the same image. To address these issues, we propose two deep learning approaches - one using a custom architecture and the other using transfer learning. We test our method against a number of benchmark datasets and demonstrate that, in terms of accuracy and robustness against various types of image distortions, it outperforms current state-of-the-art methods. Our proposed method has applications in digital forensics, copyright defence, and image authenticity.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1 6","pages":"80-91"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol27iss73pp80-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of high-quality forged images on social media and other platforms, there is a need for algorithms that can recognize the originality. Detecting copy-move forgery is essential for ensuring the authenticity and integrity of digital images, preventing fraud and deception, and upholding the law. Copy-move forgery is the act of duplicating and pasting a portion of an image to another location within the same image. To address these issues, we propose two deep learning approaches - one using a custom architecture and the other using transfer learning. We test our method against a number of benchmark datasets and demonstrate that, in terms of accuracy and robustness against various types of image distortions, it outperforms current state-of-the-art methods. Our proposed method has applications in digital forensics, copyright defence, and image authenticity.