Pre-insertion resistors temperature prediction based on improved WOA-SVR

IF 1.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Honghe Dai, Site Mo, Haoxin Wang, Nan Yin, Songhai Fan, Bixiong Li
{"title":"Pre-insertion resistors temperature prediction based on improved WOA-SVR","authors":"Honghe Dai,&nbsp;Site Mo,&nbsp;Haoxin Wang,&nbsp;Nan Yin,&nbsp;Songhai Fan,&nbsp;Bixiong Li","doi":"10.1049/smt2.12177","DOIUrl":null,"url":null,"abstract":"<p>The pre-insertion resistors (PIR) within high-voltage circuit breakers are critical components and warm up by generating Joule heat when an electric current flows through them. Elevated temperature can lead to temporary closure failure and, in severe cases, the rupture of PIR. To accurately predict the temperature of PIR, this study combines finite element simulation techniques with Support Vector Regression (SVR) optimized by an Improved Whale Optimization Algorithm (IWOA) approach. The IWOA includes Tent mapping, a convergence factor based on the sigmoid function, and the Ornstein–Uhlenbeck variation strategy. The IWOA-SVR model is compared with the SSA-SVR and WOA-SVR. The results reveal that the prediction accuracies of the IWOA-SVR model were 90.2% and 81.5% (above 100°C) in the ± 3°C temperature deviation range and 96.3% and 93.4% (above 100°C) in the ± 4°C temperature deviation range, surpassing the performance of the comparative models. This research demonstrates that the method proposed can realize the online monitoring of the temperature of the PIR, which can effectively prevent thermal faults PIR and provide a basis for the opening and closing of the circuit breaker within a short period.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The pre-insertion resistors (PIR) within high-voltage circuit breakers are critical components and warm up by generating Joule heat when an electric current flows through them. Elevated temperature can lead to temporary closure failure and, in severe cases, the rupture of PIR. To accurately predict the temperature of PIR, this study combines finite element simulation techniques with Support Vector Regression (SVR) optimized by an Improved Whale Optimization Algorithm (IWOA) approach. The IWOA includes Tent mapping, a convergence factor based on the sigmoid function, and the Ornstein–Uhlenbeck variation strategy. The IWOA-SVR model is compared with the SSA-SVR and WOA-SVR. The results reveal that the prediction accuracies of the IWOA-SVR model were 90.2% and 81.5% (above 100°C) in the ± 3°C temperature deviation range and 96.3% and 93.4% (above 100°C) in the ± 4°C temperature deviation range, surpassing the performance of the comparative models. This research demonstrates that the method proposed can realize the online monitoring of the temperature of the PIR, which can effectively prevent thermal faults PIR and provide a basis for the opening and closing of the circuit breaker within a short period.

Abstract Image

基于改进型 WOA-SVR 的插入前电阻器温度预测
高压断路器中的预插入电阻器 (PIR) 是关键部件,电流通过时会产生焦耳热而升温。温度升高会导致暂时性闭合失效,严重时会导致 PIR 破裂。为了准确预测 PIR 的温度,本研究将有限元模拟技术与支持向量回归 (SVR) 结合起来,并通过改进的鲸鱼优化算法 (IWOA) 方法进行了优化。IWOA 包括 Tent 映射、基于 sigmoid 函数的收敛因子和 Ornstein-Uhlenbeck 变化策略。IWOA-SVR 模型与 SSA-SVR 和 WOA-SVR 进行了比较。结果显示,IWOA-SVR 模型在 ± 3°C 温度偏差范围内的预测精度分别为 90.2% 和 81.5%(高于 100°C),在 ± 4°C 温度偏差范围内的预测精度分别为 96.3% 和 93.4%(高于 100°C),超过了比较模型的性能。该研究表明,所提出的方法可实现对 PIR 温度的在线监测,能有效防止 PIR 发生热故障,并在短时间内为断路器的开合提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Science Measurement & Technology
Iet Science Measurement & Technology 工程技术-工程:电子与电气
CiteScore
4.30
自引率
7.10%
发文量
41
审稿时长
7.5 months
期刊介绍: IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques. The major themes of the journal are: - electromagnetism including electromagnetic theory, computational electromagnetics and EMC - properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale - measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信