Spherically-symmetric non-static solutions of Einstein’s equations

Yu. P. Vyblyi, A. A. Leonovich
{"title":"Spherically-symmetric non-static solutions of Einstein’s equations","authors":"Yu. P. Vyblyi, A. A. Leonovich","doi":"10.29235/1561-2430-2023-59-4-308-314","DOIUrl":null,"url":null,"abstract":"In this paper, we considered non-static vacuum spherically symmetric solutions of the Einstein equations and harmonicity conditions in the coordinate system with a non-zero space-time component in the metric. For the case of the weak field, a particular solution of the approximate equations was obtained, which corresponds to a nonstatic source whose boundary moves with a constant speed. For the exact Einstein’s equations we obtained a wave-type solution, determined by two implicitly specified functions, depending on the retarded argument and on the radial coordinate, respectively. The connection between these solutions and the Birkhoff theorem is discussed.","PeriodicalId":516297,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","volume":"27 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2023-59-4-308-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we considered non-static vacuum spherically symmetric solutions of the Einstein equations and harmonicity conditions in the coordinate system with a non-zero space-time component in the metric. For the case of the weak field, a particular solution of the approximate equations was obtained, which corresponds to a nonstatic source whose boundary moves with a constant speed. For the exact Einstein’s equations we obtained a wave-type solution, determined by two implicitly specified functions, depending on the retarded argument and on the radial coordinate, respectively. The connection between these solutions and the Birkhoff theorem is discussed.
爱因斯坦方程的球对称非静态解
在本文中,我们考虑了爱因斯坦方程的非静态真空球对称解和坐标系中的谐波条件,其度量中的时空分量不为零。对于弱场的情况,我们得到了近似方程的一个特定解,它对应于边界以恒定速度移动的非静态源。对于精确的爱因斯坦方程,我们得到了一个波型解,它由两个隐含的指定函数决定,分别取决于迟滞参数和径向坐标。我们讨论了这些解与伯克霍夫定理之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信