Charlie Street, Bruno Lacerda, Manuel Mühlig, N. Hawes
{"title":"Right Place, Right Time: Proactive Multi-Robot Task Allocation Under Spatiotemporal Uncertainty","authors":"Charlie Street, Bruno Lacerda, Manuel Mühlig, N. Hawes","doi":"10.1613/jair.1.15057","DOIUrl":null,"url":null,"abstract":"For many multi-robot problems, tasks are announced during execution, where task announcement times and locations are uncertain. To synthesise multi-robot behaviour that is robust to early announcements and unexpected delays, multi-robot task allocation methods must explicitly model the stochastic processes that govern task announcement. In this paper, we model task announcement using continuous-time Markov chains which predict when and where tasks will be announced. We then present a task allocation framework which uses the continuous-time Markov chains to allocate tasks proactively, such that robots are near or at the task location upon its announcement. Our method seeks to minimise the expected total waiting duration for each task, i.e. the duration between task announcement and a robot beginning to service the task. Our framework can be applied to any multi-robot task allocation problem where robots complete spatiotemporal tasks which are announced stochastically. We demonstrate the efficacy of our approach in simulation, where we outperform baselines which do not allocate tasks proactively, or do not fully exploit our task announcement models.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
For many multi-robot problems, tasks are announced during execution, where task announcement times and locations are uncertain. To synthesise multi-robot behaviour that is robust to early announcements and unexpected delays, multi-robot task allocation methods must explicitly model the stochastic processes that govern task announcement. In this paper, we model task announcement using continuous-time Markov chains which predict when and where tasks will be announced. We then present a task allocation framework which uses the continuous-time Markov chains to allocate tasks proactively, such that robots are near or at the task location upon its announcement. Our method seeks to minimise the expected total waiting duration for each task, i.e. the duration between task announcement and a robot beginning to service the task. Our framework can be applied to any multi-robot task allocation problem where robots complete spatiotemporal tasks which are announced stochastically. We demonstrate the efficacy of our approach in simulation, where we outperform baselines which do not allocate tasks proactively, or do not fully exploit our task announcement models.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.