Some applications of the generalized Laplace transform and the representation of a solution to Sobolev-type evolution equations with the generalized Caputo derivative

Mustafa Aydin, N. Mahmudov
{"title":"Some applications of the generalized Laplace transform and the representation of a solution to Sobolev-type evolution equations with the generalized Caputo derivative","authors":"Mustafa Aydin, N. Mahmudov","doi":"10.24425/bpasts.2024.149170","DOIUrl":null,"url":null,"abstract":". We introduce the Sobolev-type multi-term µ -fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.","PeriodicalId":503897,"journal":{"name":"Bulletin of the Polish Academy of Sciences Technical Sciences","volume":"22 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2024.149170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We introduce the Sobolev-type multi-term µ -fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.
广义拉普拉斯变换的一些应用和具有广义卡普托导数的索波列夫型演化方程解的表示法
.我们介绍了相对于另一个函数的具有广义分数阶的 Sobolev 型多期 µ 分数演化。我们提出了广义拉普拉斯变换的一些应用。接下来,我们提出了一种由关于给定函数的非交换线性有界算子生成的新型 Mittag-Leffler 函数,并给出了它的一些性质。我们在上述 Mittag-Leffler 型函数的基础上,借助两种不同的方法,寻找索波列夫型演化方程的温和求解公式。我们分享了所获发现的新特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信