An optimized system for sensor ontology meta-matching using swarm intelligent algorithm

IF 0.9 Q4 TELECOMMUNICATIONS
Abdul Lateef Haroon P S, Sujata N. Patil, Parameshachari Bidare Divakarachari, Przemysław Falkowski-Gilski, M. D. Rafeeq
{"title":"An optimized system for sensor ontology meta-matching using swarm intelligent algorithm","authors":"Abdul Lateef Haroon P S,&nbsp;Sujata N. Patil,&nbsp;Parameshachari Bidare Divakarachari,&nbsp;Przemysław Falkowski-Gilski,&nbsp;M. D. Rafeeq","doi":"10.1002/itl2.498","DOIUrl":null,"url":null,"abstract":"<p>It is beneficial to annotate sensor data with distinct sensor ontologies in order to facilitate interoperability among different sensor systems. However, for this interoperability to be possible, comparable sensor ontologies are required since it is essential to make meaningful links between relevant sensor data. Swarm Intelligent Algorithms (SIAs), namely the Beetle Swarm Optimisation Algorithm (BSO), present a possible answer to ontology matching problems. This research focuses on a method for optimizing ontology alignment that employs BSO. A novel method for effectively controlling memory use and striking a balance between algorithm exploration and exploitation is proposed: the Simulated Annealing-based Beetle Swarm Optimisation Algorithm (SA-BSO). Utilizing Gray code for solution encoding, two compact operators for exploitation and exploration, and Probability Vectors (PVs) for swarming choosing exploitation and exploration, SA-BSO combines simulated annealing with the beetle search process. Through inter-swarm communication in every generation, SA-BSO improves search efficiency in addressing sensor ontology matching. Three pairs of real sensor ontologies and the Conference track were used in the study to assess SA-BSO's efficacy. Statistics show that SA-BSO-based ontology matching successfully aligns sensor ontologies and other general ontologies, particularly in conference planning scenarios.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is beneficial to annotate sensor data with distinct sensor ontologies in order to facilitate interoperability among different sensor systems. However, for this interoperability to be possible, comparable sensor ontologies are required since it is essential to make meaningful links between relevant sensor data. Swarm Intelligent Algorithms (SIAs), namely the Beetle Swarm Optimisation Algorithm (BSO), present a possible answer to ontology matching problems. This research focuses on a method for optimizing ontology alignment that employs BSO. A novel method for effectively controlling memory use and striking a balance between algorithm exploration and exploitation is proposed: the Simulated Annealing-based Beetle Swarm Optimisation Algorithm (SA-BSO). Utilizing Gray code for solution encoding, two compact operators for exploitation and exploration, and Probability Vectors (PVs) for swarming choosing exploitation and exploration, SA-BSO combines simulated annealing with the beetle search process. Through inter-swarm communication in every generation, SA-BSO improves search efficiency in addressing sensor ontology matching. Three pairs of real sensor ontologies and the Conference track were used in the study to assess SA-BSO's efficacy. Statistics show that SA-BSO-based ontology matching successfully aligns sensor ontologies and other general ontologies, particularly in conference planning scenarios.

使用蜂群智能算法的传感器本体元匹配优化系统
用不同的传感器本体对传感器数据进行注释有利于促进不同传感器系统之间的互操作性。然而,要实现这种互操作性,需要可比较的传感器本体,因为在相关传感器数据之间建立有意义的联系至关重要。蜂群智能算法(SIA),即甲虫蜂群优化算法(BSO),为本体匹配问题提供了一种可能的解决方案。本研究的重点是采用 BSO 优化本体匹配的方法。本文提出了一种有效控制内存使用并在算法探索和利用之间取得平衡的新方法:基于模拟退火的甲虫群优化算法(SA-BSO)。SA-BSO 将模拟退火与甲虫搜索过程相结合,利用灰色代码进行解决方案编码,利用两个紧凑算子进行开发和探索,利用概率向量(PV)进行蜂群选择开发和探索。通过每一代蜂群间的通信,SA-BSO 提高了解决传感器本体匹配问题的搜索效率。研究中使用了三对真实传感器本体和会议轨道来评估 SA-BSO 的功效。统计结果表明,基于 SA-BSO 的本体匹配成功地将传感器本体与其他通用本体相匹配,尤其是在会议规划场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信