Jongmin M. Lee, Temesgen Gebrekristos, Dalia De Santis, Mahdieh Nejati-Javaremi, Deepak Gopinath, Biraj Parikh, F. Mussa-Ivaldi, B. Argall
{"title":"Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces","authors":"Jongmin M. Lee, Temesgen Gebrekristos, Dalia De Santis, Mahdieh Nejati-Javaremi, Deepak Gopinath, Biraj Parikh, F. Mussa-Ivaldi, B. Argall","doi":"10.1145/3630264","DOIUrl":null,"url":null,"abstract":"When individuals are paralyzed from injury or damage to the brain, upper body movement and function can be compromised. While the use of body motions to interface with machines has shown to be an effective noninvasive strategy to provide movement assistance and to promote physical rehabilitation, learning to use such interfaces to control complex machines is not well understood. In a five session study, we demonstrate that a subset of an uninjured population is able to learn and improve their ability to use a high-dimensional Body-Machine Interface (BoMI), to control a robotic arm. We use a sensor net of four inertial measurement units, placed bilaterally on the upper body, and a BoMI with the capacity to directly control a robot in six dimensions. We consider whether the way in which the robot control space is mapped from human inputs has any impact on learning. Our results suggest that the space of robot control does play a role in the evolution of human learning: specifically, though robot control in joint space appears to be more intuitive initially, control in task space is found to have a greater capacity for longer-term improvement and learning. Our results further suggest that there is an inverse relationship between control dimension couplings and task performance.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
When individuals are paralyzed from injury or damage to the brain, upper body movement and function can be compromised. While the use of body motions to interface with machines has shown to be an effective noninvasive strategy to provide movement assistance and to promote physical rehabilitation, learning to use such interfaces to control complex machines is not well understood. In a five session study, we demonstrate that a subset of an uninjured population is able to learn and improve their ability to use a high-dimensional Body-Machine Interface (BoMI), to control a robotic arm. We use a sensor net of four inertial measurement units, placed bilaterally on the upper body, and a BoMI with the capacity to directly control a robot in six dimensions. We consider whether the way in which the robot control space is mapped from human inputs has any impact on learning. Our results suggest that the space of robot control does play a role in the evolution of human learning: specifically, though robot control in joint space appears to be more intuitive initially, control in task space is found to have a greater capacity for longer-term improvement and learning. Our results further suggest that there is an inverse relationship between control dimension couplings and task performance.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.