K. Rutherford, K. Fennel, Lina Garcia Suarez, J. John
{"title":"Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections","authors":"K. Rutherford, K. Fennel, Lina Garcia Suarez, J. John","doi":"10.5194/bg-21-301-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The global ocean's coastal areas are rapidly experiencing the effects of climate change. These regions are highly dynamic, with relatively small-scale circulation features like shelf break currents playing an important role. Projections can produce widely diverging estimates of future regional circulation structures. Here, we use the northwestern North Atlantic, a hotspot of ocean warming, as a case study to illustrate how the uncertainty in future estimates of regional circulation manifests itself and affects projections of shelf-wide biogeochemistry. Two diverging climate model projections are considered and downscaled using a high-resolution regional model with intermediate biogeochemical complexity. The two resulting future scenarios exhibit qualitatively different circulation structures by 2075 where along-shelf volume transport is reduced by 70 % in one of them and while remaining largely unchanged in the other. The reduction in along-shelf transport creates localized areas with either amplified warming (+3 ∘C) and salinification (+0.25 units) or increased acidification (−0.25 units) in shelf bottom waters. Our results suggest that a wide range of outcomes is possible for continental margins and suggest a need for accurate projections of small-scale circulation features like shelf break currents in order to improve the reliability of biogeochemical projections.\n","PeriodicalId":502171,"journal":{"name":"Biogeosciences","volume":"25 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-21-301-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. The global ocean's coastal areas are rapidly experiencing the effects of climate change. These regions are highly dynamic, with relatively small-scale circulation features like shelf break currents playing an important role. Projections can produce widely diverging estimates of future regional circulation structures. Here, we use the northwestern North Atlantic, a hotspot of ocean warming, as a case study to illustrate how the uncertainty in future estimates of regional circulation manifests itself and affects projections of shelf-wide biogeochemistry. Two diverging climate model projections are considered and downscaled using a high-resolution regional model with intermediate biogeochemical complexity. The two resulting future scenarios exhibit qualitatively different circulation structures by 2075 where along-shelf volume transport is reduced by 70 % in one of them and while remaining largely unchanged in the other. The reduction in along-shelf transport creates localized areas with either amplified warming (+3 ∘C) and salinification (+0.25 units) or increased acidification (−0.25 units) in shelf bottom waters. Our results suggest that a wide range of outcomes is possible for continental margins and suggest a need for accurate projections of small-scale circulation features like shelf break currents in order to improve the reliability of biogeochemical projections.