Decoding the exposome: Data science methodologies and implications in Exposome-Wide association studies (ExWASs)

Exposome Pub Date : 2024-01-17 DOI:10.1093/exposome/osae001
Ming Kei Chung, John S. House, F. Akhtari, Konstantinos C Makris, Michael A. Langston, Khandaker Talat Islam, Philip Holmes, Marc Chadeau-Hyam, Alex I Smirnov, Xiuxia Du, Anne E Thessen, Yuxia Cui, Kai Zhang, Arjun K. Manrai, Alison Motsinger-Reif, Chirag J Patel
{"title":"Decoding the exposome: Data science methodologies and implications in Exposome-Wide association studies (ExWASs)","authors":"Ming Kei Chung, John S. House, F. Akhtari, Konstantinos C Makris, Michael A. Langston, Khandaker Talat Islam, Philip Holmes, Marc Chadeau-Hyam, Alex I Smirnov, Xiuxia Du, Anne E Thessen, Yuxia Cui, Kai Zhang, Arjun K. Manrai, Alison Motsinger-Reif, Chirag J Patel","doi":"10.1093/exposome/osae001","DOIUrl":null,"url":null,"abstract":"\n This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and non-shared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term “exposome-wide association study, ExWAS,” to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.","PeriodicalId":73005,"journal":{"name":"Exposome","volume":"59 50","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exposome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/exposome/osae001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and non-shared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term “exposome-wide association study, ExWAS,” to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.
解码暴露组:全暴露组关联研究(ExWASs)中的数据科学方法及其影响
本文探讨了暴露体概念及其在阐明环境暴露与人类健康之间相互作用方面的作用。我们介绍了对暴露体研究至关重要的两个关键概念。首先,我们讨论了遗传和环境对表型的共同影响,强调了可归因于共有和非共有环境因素的变异,突出了量化暴露体对健康结果影响的复杂性。其次,我们介绍了在大型队列研究中采用先进的数据驱动方法进行暴露组测量的重要性。在这里,我们介绍了全暴露组关联研究(ExWAS),这种方法旨在系统地发现表型与各种暴露之间的关系,在控制多重比较的同时确定显著的关联。我们提倡标准化使用 "全暴露体关联研究,ExWAS "这一术语,以促进该领域的清晰交流和文献检索。本文旨在指导未来的健康研究人员理解和评估暴露组学研究。我们的讨论延伸到了新出现的话题,如 FAIR 数据原则、生物库医疗数据集和功能性暴露组,勾勒出了暴露组研究的未来方向。本摘要简明扼要地概述了我们理解暴露组复杂动态及其对人类健康重大影响的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信