MAU-Net:a multi-branch attention U-Net for full-wavefom inversion

GEOPHYSICS Pub Date : 2024-01-18 DOI:10.1190/geo2023-0043.1
Hanyang Li, Jiahui Li, Xuegui Li, Hongli Dong, Gang Xu, Mi Zhang
{"title":"MAU-Net:a multi-branch attention U-Net for full-wavefom inversion","authors":"Hanyang Li, Jiahui Li, Xuegui Li, Hongli Dong, Gang Xu, Mi Zhang","doi":"10.1190/geo2023-0043.1","DOIUrl":null,"url":null,"abstract":"Data-driven velocity inversion has emerged as a prominent and challenging problem in seismic exploration. The complexity of the inversion problem and the limited data set make it difficult to ensure the stability and generalization of neural networks. To address these concerns, we propose a novel approach called multi-branch attention U-Net (MAU-Net) for velocity inversion. The key distinction of MAU-Net from previous data-driven approaches lies in its ability to not only learn information from the data domain, but also incorporate prior model domain information. MAU-Net consists of two branches: one branch uses seismic records as input to effectively learn the mapping relationship between the data and model domains, while the other branch employs a prior geological model as input to extract features from the model domain, thereby guiding MAU-Net’s learning process. Additionally, we introduce three major improvements in the model branching path to enhance MAU-Net’s utilization of seismic data and handle redundant information. We validate the effectiveness of each improvement through ablation experiments. The performance of MAU-Net is demonstrated with the Marmousi model and 2004 BP model, and it can also be combined with FWI to further improve the quality of the inversion result. MAU-Net exhibits robust performance on field data through the use of transfer learning techniques, further confirming its reliability and applicability.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0043.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven velocity inversion has emerged as a prominent and challenging problem in seismic exploration. The complexity of the inversion problem and the limited data set make it difficult to ensure the stability and generalization of neural networks. To address these concerns, we propose a novel approach called multi-branch attention U-Net (MAU-Net) for velocity inversion. The key distinction of MAU-Net from previous data-driven approaches lies in its ability to not only learn information from the data domain, but also incorporate prior model domain information. MAU-Net consists of two branches: one branch uses seismic records as input to effectively learn the mapping relationship between the data and model domains, while the other branch employs a prior geological model as input to extract features from the model domain, thereby guiding MAU-Net’s learning process. Additionally, we introduce three major improvements in the model branching path to enhance MAU-Net’s utilization of seismic data and handle redundant information. We validate the effectiveness of each improvement through ablation experiments. The performance of MAU-Net is demonstrated with the Marmousi model and 2004 BP model, and it can also be combined with FWI to further improve the quality of the inversion result. MAU-Net exhibits robust performance on field data through the use of transfer learning techniques, further confirming its reliability and applicability.
MAU-Net:用于全波反演的多分支注意 U-Net
数据驱动的速度反演已成为地震勘探中一个突出而具有挑战性的问题。反演问题的复杂性和有限的数据集使得神经网络的稳定性和泛化难以保证。为了解决这些问题,我们提出了一种用于速度反演的新方法,称为多分支注意 U-Net (MAU-Net)。MAU-Net 与以往数据驱动方法的主要区别在于,它不仅能从数据域学习信息,还能结合先前的模型域信息。MAU-Net 包括两个分支:一个分支使用地震记录作为输入,以有效学习数据域和模型域之间的映射关系;另一个分支使用先前的地质模型作为输入,从模型域中提取特征,从而指导 MAU-Net 的学习过程。此外,我们还对模型分支路径进行了三大改进,以提高 MAU-Net 对地震数据的利用率并处理冗余信息。我们通过消融实验验证了每项改进的有效性。MAU-Net 的性能通过 Marmousi 模型和 2004 BP 模型得到了验证,它还可以与 FWI 结合使用,进一步提高反演结果的质量。通过使用迁移学习技术,MAU-Net 在野外数据上表现出强大的性能,进一步证实了其可靠性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信