Perspectives in architected infrastructure materials

Q2 Engineering
Reza Moini
{"title":"Perspectives in architected infrastructure materials","authors":"Reza Moini","doi":"10.21809/rilemtechlett.2023.183","DOIUrl":null,"url":null,"abstract":"This paper presents perspectives and progress in the emerging field of architected infrastructure materials. Recent developments in advanced and additive manufacturing with construction materials have led to new capabilities to define, design, and shape the internal arrangement and overall morphology of materials. In contrast to conventional casting techniques used in the construction of civil engineering materials, such advancements have allowed for purposeful designs of materials into specific morphologies across scales, referred to as architected infrastructure materials. Contrary to monolithic construction materials, architected materials present new opportunities to engineer enhanced mechanical properties and unique performance characteristics in civil infrastructure components through design. Here, we present an overview of the field and the research gaps in design, manufacturing, and materials mechanics. An overview of a few design opportunities, including bio-inspired strategies is discussed. Current advancements in the field are presented focusing on cement-based, non-hydraulic, and cementitious composite architected materials. The existing studies on bouligand, cellular, lattice, auxetic, tabulated, and gradient architected construction materials and their mechanically advantageous characteristics are reviewed. The future directions and perspectives for the field are outlined with respect to the current research gaps and upcoming opportunities.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/rilemtechlett.2023.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents perspectives and progress in the emerging field of architected infrastructure materials. Recent developments in advanced and additive manufacturing with construction materials have led to new capabilities to define, design, and shape the internal arrangement and overall morphology of materials. In contrast to conventional casting techniques used in the construction of civil engineering materials, such advancements have allowed for purposeful designs of materials into specific morphologies across scales, referred to as architected infrastructure materials. Contrary to monolithic construction materials, architected materials present new opportunities to engineer enhanced mechanical properties and unique performance characteristics in civil infrastructure components through design. Here, we present an overview of the field and the research gaps in design, manufacturing, and materials mechanics. An overview of a few design opportunities, including bio-inspired strategies is discussed. Current advancements in the field are presented focusing on cement-based, non-hydraulic, and cementitious composite architected materials. The existing studies on bouligand, cellular, lattice, auxetic, tabulated, and gradient architected construction materials and their mechanically advantageous characteristics are reviewed. The future directions and perspectives for the field are outlined with respect to the current research gaps and upcoming opportunities.
架构基础设施材料的视角
本文介绍了建筑基础设施材料这一新兴领域的前景和进展。建筑材料先进制造和增材制造领域的最新发展带来了定义、设计和塑造材料内部排列和整体形态的新能力。与土木工程材料建造过程中使用的传统铸造技术相比,这种进步使人们能够有目的地将材料设计成不同尺度的特定形态,即建筑基础设施材料。与整体建筑材料相反,建筑材料为通过设计提高土木基础设施组件的机械性能和独特性能特征提供了新的机遇。在此,我们将概述这一领域以及设计、制造和材料力学方面的研究空白。我们还讨论了一些设计机会,包括生物启发策略。重点介绍了水泥基、非液压和水泥基复合结构材料在该领域的最新进展。综述了关于布里格、蜂窝、晶格、辅助、表格和梯度结构建筑材料及其机械优势特性的现有研究。针对当前的研究空白和即将到来的机遇,概述了该领域的未来发展方向和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信