Dynamic Associations Between Centers for Disease Control and Prevention Social Media Contents and Epidemic Measures During COVID-19: Infoveillance Study.
{"title":"Dynamic Associations Between Centers for Disease Control and Prevention Social Media Contents and Epidemic Measures During COVID-19: Infoveillance Study.","authors":"Shuhua Yin, Shi Chen, Yaorong Ge","doi":"10.2196/49756","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health agencies have been widely adopting social media to disseminate important information, educate the public on emerging health issues, and understand public opinions. The Centers for Disease Control and Prevention (CDC) widely used social media platforms during the COVID-19 pandemic to communicate with the public and mitigate the disease in the United States. It is crucial to understand the relationships between the CDC's social media communications and the actual epidemic metrics to improve public health agencies' communication strategies during health emergencies.</p><p><strong>Objective: </strong>This study aimed to identify key topics in tweets posted by the CDC during the pandemic, investigate the temporal dynamics between these key topics and the actual COVID-19 epidemic measures, and make recommendations for the CDC's digital health communication strategies for future health emergencies.</p><p><strong>Methods: </strong>Two types of data were collected: (1) a total of 17,524 COVID-19-related English tweets posted by the CDC between December 7, 2019, and January 15, 2022, and (2) COVID-19 epidemic measures in the United States from the public GitHub repository of Johns Hopkins University from January 2020 to July 2022. Latent Dirichlet allocation topic modeling was applied to identify key topics from all COVID-19-related tweets posted by the CDC, and the final topics were determined by domain experts. Various multivariate time series analysis techniques were applied between each of the identified key topics and actual COVID-19 epidemic measures to quantify the dynamic associations between these 2 types of time series data.</p><p><strong>Results: </strong>Four major topics from the CDC's COVID-19 tweets were identified: (1) information on the prevention of health outcomes of COVID-19; (2) pediatric intervention and family safety; (3) updates of the epidemic situation of COVID-19; and (4) research and community engagement to curb COVID-19. Multivariate analyses showed that there were significant variabilities of progression between the CDC's topics and the actual COVID-19 epidemic measures. Some CDC topics showed substantial associations with the COVID-19 measures over different time spans throughout the pandemic, expressing similar temporal dynamics between these 2 types of time series data.</p><p><strong>Conclusions: </strong>Our study is the first to comprehensively investigate the dynamic associations between topics discussed by the CDC on Twitter and the COVID-19 epidemic measures in the United States. We identified 4 major topic themes via topic modeling and explored how each of these topics was associated with each major epidemic measure by performing various multivariate time series analyses. We recommend that it is critical for public health agencies, such as the CDC, to update and disseminate timely and accurate information to the public and align major topics with key epidemic measures over time. We suggest that social media can help public health agencies to inform the public on health emergencies and to mitigate them effectively.</p>","PeriodicalId":73554,"journal":{"name":"JMIR infodemiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR infodemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/49756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Health agencies have been widely adopting social media to disseminate important information, educate the public on emerging health issues, and understand public opinions. The Centers for Disease Control and Prevention (CDC) widely used social media platforms during the COVID-19 pandemic to communicate with the public and mitigate the disease in the United States. It is crucial to understand the relationships between the CDC's social media communications and the actual epidemic metrics to improve public health agencies' communication strategies during health emergencies.
Objective: This study aimed to identify key topics in tweets posted by the CDC during the pandemic, investigate the temporal dynamics between these key topics and the actual COVID-19 epidemic measures, and make recommendations for the CDC's digital health communication strategies for future health emergencies.
Methods: Two types of data were collected: (1) a total of 17,524 COVID-19-related English tweets posted by the CDC between December 7, 2019, and January 15, 2022, and (2) COVID-19 epidemic measures in the United States from the public GitHub repository of Johns Hopkins University from January 2020 to July 2022. Latent Dirichlet allocation topic modeling was applied to identify key topics from all COVID-19-related tweets posted by the CDC, and the final topics were determined by domain experts. Various multivariate time series analysis techniques were applied between each of the identified key topics and actual COVID-19 epidemic measures to quantify the dynamic associations between these 2 types of time series data.
Results: Four major topics from the CDC's COVID-19 tweets were identified: (1) information on the prevention of health outcomes of COVID-19; (2) pediatric intervention and family safety; (3) updates of the epidemic situation of COVID-19; and (4) research and community engagement to curb COVID-19. Multivariate analyses showed that there were significant variabilities of progression between the CDC's topics and the actual COVID-19 epidemic measures. Some CDC topics showed substantial associations with the COVID-19 measures over different time spans throughout the pandemic, expressing similar temporal dynamics between these 2 types of time series data.
Conclusions: Our study is the first to comprehensively investigate the dynamic associations between topics discussed by the CDC on Twitter and the COVID-19 epidemic measures in the United States. We identified 4 major topic themes via topic modeling and explored how each of these topics was associated with each major epidemic measure by performing various multivariate time series analyses. We recommend that it is critical for public health agencies, such as the CDC, to update and disseminate timely and accurate information to the public and align major topics with key epidemic measures over time. We suggest that social media can help public health agencies to inform the public on health emergencies and to mitigate them effectively.