Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiological Physics and Technology Pub Date : 2024-03-01 Epub Date: 2024-01-23 DOI:10.1007/s12194-024-00777-y
Yuya Nagake, Keisuke Yasui, Hiromu Ooe, Masaya Ichihara, Kaito Iwase, Toshiyuki Toshito, Naoki Hayashi
{"title":"Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS.","authors":"Yuya Nagake, Keisuke Yasui, Hiromu Ooe, Masaya Ichihara, Kaito Iwase, Toshiyuki Toshito, Naoki Hayashi","doi":"10.1007/s12194-024-00777-y","DOIUrl":null,"url":null,"abstract":"<p><p>The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> and beam quality correction factors <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> and <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> with high precision.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00777-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber f Q and beam quality correction factors k Q were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. f Q was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the f Q calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The f Q calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the k Q were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the f Q and k Q with high precision.

利用质子束和法诺腔测试对蒙特卡罗模拟代码 PHITS 的电离室扰动因子进行研究。
临床质子束治疗的参考剂量基于电离室剂量测定。然而,质子剂量测定的不确定性数据还很缺乏,需要进行多方面的研究。蒙特卡罗模拟是计算辐射场中电离室剂量的有用工具,当粒子在异质区域传输时,它对传输算法参数很敏感。我们的目的是利用法诺测试评估粒子和重离子输运代码系统(PHITS)的质子输运算法。电离室的响应[计算公式:见正文]和束流质量校正因子[计算公式:见正文]使用与法诺试验中相同的参数进行计算,并与其他蒙特卡洛代码进行比较验证。法诺试验的几何形状包括一个夹在两个圆柱形壁之间的充满气体的圆柱形空腔。计算[公式:见正文]为水中的吸收剂量与腔体内的剂量之比。我们将使用 PHITS 计算出的[公式:见正文]与之前研究中使用其他蒙特卡罗代码(Geant4、FULKA 和 PENH)在类似条件下计算出的[公式:见正文]进行了比较。作为带电粒子传输参数的飞行网格通过了 0.15% 以内的法诺测试。与之前的研究相比,这已经足够精确了。使用 PHITS 计算出的 NACP-02 和 PTW-30013 的[计算公式:见正文]分别为 1.116 ± 0.002 和 1.124 ± 0.003,而在 150 MeV 时的[计算公式:见正文]分别为 0.981 ± 0.008 和 1.027 ± 0.008。我们的结果表明,PHITS 可以高精度地计算[公式:见正文]和[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信