Linda Preminger, Kathryn N. Hayes, Christine L. Bae, Dawn O'Connor
{"title":"Why do teachers vary in their instructional change during science PD? The role of noticing students in an iterative change process","authors":"Linda Preminger, Kathryn N. Hayes, Christine L. Bae, Dawn O'Connor","doi":"10.1002/sce.21853","DOIUrl":null,"url":null,"abstract":"<p>Instructional shifts required by equitable, reform-based science instruction are challenging, especially in the elementary context. Such shifts require professional development (PD) that supports teacher internalization of new pedagogical strategies as well as changes in beliefs about how students learn. Because of this complexity, many PD programs struggle to foster lasting pedagogical shifts, necessitating further investigation into why some teachers successfully embrace reform practices while others do not. This qualitative study uses a nonlinear, iterative model of teacher learning (Interconnected Model of Professional Growth; Clarke & Hollingsworth, 2002) alongside professional noticing to help understand why elementary teachers in science PD differentially make sense of and internalize new pedagogies. Findings indicate that teachers most likely to adopt reform-based instructional practices from the PD were those who clearly connected student learning to their instructional moves. In addition, teachers who more actively attended to student sensemaking and productive struggle took up pedagogies from the PD more substantively than did colleagues who attended solely to student engagement and affect. Finally, teachers who attended to and valued novel ideas from students’ lived experiences were more likely to change their beliefs about students’ capacity to learn science, and thus more likely to see the value of instructional practices from the PD. In sum, structuring PD to build on these specific teacher noticing skills can encourage more teachers to move away from traditional, teacher-directed instructional practice, and more fully support reform-based instructional practices.</p>","PeriodicalId":771,"journal":{"name":"Science & Education","volume":"108 3","pages":"701-733"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sce.21853","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sce.21853","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Instructional shifts required by equitable, reform-based science instruction are challenging, especially in the elementary context. Such shifts require professional development (PD) that supports teacher internalization of new pedagogical strategies as well as changes in beliefs about how students learn. Because of this complexity, many PD programs struggle to foster lasting pedagogical shifts, necessitating further investigation into why some teachers successfully embrace reform practices while others do not. This qualitative study uses a nonlinear, iterative model of teacher learning (Interconnected Model of Professional Growth; Clarke & Hollingsworth, 2002) alongside professional noticing to help understand why elementary teachers in science PD differentially make sense of and internalize new pedagogies. Findings indicate that teachers most likely to adopt reform-based instructional practices from the PD were those who clearly connected student learning to their instructional moves. In addition, teachers who more actively attended to student sensemaking and productive struggle took up pedagogies from the PD more substantively than did colleagues who attended solely to student engagement and affect. Finally, teachers who attended to and valued novel ideas from students’ lived experiences were more likely to change their beliefs about students’ capacity to learn science, and thus more likely to see the value of instructional practices from the PD. In sum, structuring PD to build on these specific teacher noticing skills can encourage more teachers to move away from traditional, teacher-directed instructional practice, and more fully support reform-based instructional practices.
期刊介绍:
Science Education publishes original articles on the latest issues and trends occurring internationally in science curriculum, instruction, learning, policy and preparation of science teachers with the aim to advance our knowledge of science education theory and practice. In addition to original articles, the journal features the following special sections: -Learning : consisting of theoretical and empirical research studies on learning of science. We invite manuscripts that investigate learning and its change and growth from various lenses, including psychological, social, cognitive, sociohistorical, and affective. Studies examining the relationship of learning to teaching, the science knowledge and practices, the learners themselves, and the contexts (social, political, physical, ideological, institutional, epistemological, and cultural) are similarly welcome. -Issues and Trends : consisting primarily of analytical, interpretive, or persuasive essays on current educational, social, or philosophical issues and trends relevant to the teaching of science. This special section particularly seeks to promote informed dialogues about current issues in science education, and carefully reasoned papers representing disparate viewpoints are welcomed. Manuscripts submitted for this section may be in the form of a position paper, a polemical piece, or a creative commentary. -Science Learning in Everyday Life : consisting of analytical, interpretative, or philosophical papers regarding learning science outside of the formal classroom. Papers should investigate experiences in settings such as community, home, the Internet, after school settings, museums, and other opportunities that develop science interest, knowledge or practices across the life span. Attention to issues and factors relating to equity in science learning are especially encouraged.. -Science Teacher Education [...]