{"title":"On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters","authors":"Nirjan Biswas, Firoj Sk","doi":"10.1017/prm.2023.134","DOIUrl":null,"url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s_1,\\,s_2\\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$p,\\,q \\in (1,\\, \\infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline3.png\"/></span></span>, we study the following nonlinear Dirichlet eigenvalue problem with parameters <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\, \\beta \\in \\mathbb {R}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline4.png\"/></span></span> driven by the sum of two nonlocal operators:<span><span data-mathjax-type=\"texmath\"><span>\\[ (-\\Delta)^{s_1}_p u+(-\\Delta)^{s_2}_q u=\\alpha|u|^{p-2}u+\\beta|u|^{q-2}u\\ \\text{in }\\Omega, \\quad u=0\\ \\text{in } \\mathbb{R}^d \\setminus \\Omega, \\quad \\mathrm{(P)} \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$\\Omega \\subset \\mathbb {R}^d$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline5.png\"/></span></span> is a bounded open set. Depending on the values of <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\,\\beta$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline6.png\"/></span></span>, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional <span><span><span data-mathjax-type=\"texmath\"><span>$(\\alpha,\\, \\beta )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline7.png\"/></span></span>-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline8.png\"/></span></span>-Laplace and fractional <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline9.png\"/></span></span>-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"57 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For $s_1,\,s_2\in (0,\,1)$ and $p,\,q \in (1,\, \infty )$, we study the following nonlinear Dirichlet eigenvalue problem with parameters $\alpha,\, \beta \in \mathbb {R}$ driven by the sum of two nonlocal operators:\[ (-\Delta)^{s_1}_p u+(-\Delta)^{s_2}_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\ \text{in }\Omega, \quad u=0\ \text{in } \mathbb{R}^d \setminus \Omega, \quad \mathrm{(P)} \]where $\Omega \subset \mathbb {R}^d$ is a bounded open set. Depending on the values of $\alpha,\,\beta$, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(\alpha,\, \beta )$-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$-Laplace and fractional $q$-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.