On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters

IF 1.3 3区 数学 Q1 MATHEMATICS
Nirjan Biswas, Firoj Sk
{"title":"On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters","authors":"Nirjan Biswas, Firoj Sk","doi":"10.1017/prm.2023.134","DOIUrl":null,"url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s_1,\\,s_2\\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$p,\\,q \\in (1,\\, \\infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline3.png\"/></span></span>, we study the following nonlinear Dirichlet eigenvalue problem with parameters <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\, \\beta \\in \\mathbb {R}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline4.png\"/></span></span> driven by the sum of two nonlocal operators:<span><span data-mathjax-type=\"texmath\"><span>\\[ (-\\Delta)^{s_1}_p u+(-\\Delta)^{s_2}_q u=\\alpha|u|^{p-2}u+\\beta|u|^{q-2}u\\ \\text{in }\\Omega, \\quad u=0\\ \\text{in } \\mathbb{R}^d \\setminus \\Omega, \\quad \\mathrm{(P)} \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$\\Omega \\subset \\mathbb {R}^d$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline5.png\"/></span></span> is a bounded open set. Depending on the values of <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\,\\beta$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline6.png\"/></span></span>, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional <span><span><span data-mathjax-type=\"texmath\"><span>$(\\alpha,\\, \\beta )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline7.png\"/></span></span>-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline8.png\"/></span></span>-Laplace and fractional <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline9.png\"/></span></span>-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"57 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For $s_1,\,s_2\in (0,\,1)$Abstract Image and $p,\,q \in (1,\, \infty )$Abstract Image, we study the following nonlinear Dirichlet eigenvalue problem with parameters $\alpha,\, \beta \in \mathbb {R}$Abstract Image driven by the sum of two nonlocal operators:\[ (-\Delta)^{s_1}_p u+(-\Delta)^{s_2}_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\ \text{in }\Omega, \quad u=0\ \text{in } \mathbb{R}^d \setminus \Omega, \quad \mathrm{(P)} \]Abstract Imagewhere $\Omega \subset \mathbb {R}^d$Abstract Image is a bounded open set. Depending on the values of $\alpha,\,\beta$Abstract Image, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(\alpha,\, \beta )$Abstract Image-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$Abstract Image-Laplace and fractional $q$Abstract Image-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.

论带两个参数的分数(p,q)-拉普拉斯算子的广义特征值问题
对于 $s_1,s_2\in (0,\,1)$ 和 $p,\,q \in (1,\, \infty )$,我们研究了以下由两个非局部算子之和驱动的参数为 $\alpha,\, \beta \in \mathbb {R}$ 的非线性迪里夏特特征值问题:\(-\Delta)^{s_1}_p u+(-\Delta)^{s_2}_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\text{in }\Omega, \quad u=0\\text{in }\mathbb{R}^d \setminus \Omega, \quad \mathrm{(P)} \]其中 $\Omega \子集 \mathbb {R}^d$ 是一个有界的开集。根据 $\alpha,\,\beta$ 的值,我们完整地描述了 (P) 正解的存在与不存在。我们在二维 $(\alpha,\,\beta )$ 平面上构造了一条连续的阈值曲线,它将正解的存在与不存在区域分开。此外,我们证明了分数 $p$-Laplace 和分数 $q$-Laplace 算子的第一个 Dirichlet 特征函数是线性独立的,这对曲线的形成起着至关重要的作用。此外,我们还确定了 (P) 的每个非负解都是全局有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信