Vance L. Martin, Jialu Shi, Yang Song, Wenying Yao
{"title":"Identifying changes in the distribution of income from higher-order moments with an application to Australia","authors":"Vance L. Martin, Jialu Shi, Yang Song, Wenying Yao","doi":"10.1111/anzs.12405","DOIUrl":null,"url":null,"abstract":"<p>Changes in the distribution of income over time are identified based on an adjusted two-sample version of the Neyman smooth test by using subsampling methods to approximate the sampling distribution of the test statistic when samples are not independent of each other. A range of Monte Carlo experiments show that the approach corrects for size distortions arising from dependent samples as well as generating monotonic power functions. Applying the approach to studying the distribution of income in Australia over the business cycle and the Global Financial Crisis, the empirical results highlight the importance of higher-order moments and demonstrate that business cycles are not all alike as the relative strengths of higher-order moments vary over phases of the cycle.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 1","pages":"21-47"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12405","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12405","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in the distribution of income over time are identified based on an adjusted two-sample version of the Neyman smooth test by using subsampling methods to approximate the sampling distribution of the test statistic when samples are not independent of each other. A range of Monte Carlo experiments show that the approach corrects for size distortions arising from dependent samples as well as generating monotonic power functions. Applying the approach to studying the distribution of income in Australia over the business cycle and the Global Financial Crisis, the empirical results highlight the importance of higher-order moments and demonstrate that business cycles are not all alike as the relative strengths of higher-order moments vary over phases of the cycle.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.