A New Regularized Siegel-Weil Type Formula. Part I

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David Ginzburg, David Soudry
{"title":"A New Regularized Siegel-Weil Type Formula. Part I","authors":"David Ginzburg, David Soudry","doi":"10.1007/s00039-024-00657-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a formula, realizing certain residual Eisenstein series on symplectic groups as regularized kernel integrals. These Eisenstein series, as well as the kernel integrals, are attached to Speh representations. This forms an initial step to a new type of a regularized Siegel-Weil formula that we propose. This new formula bears the same relation to the generalized doubling integrals of Cai, Friedberg, Ginzburg and Kaplan, as does the regularized Siegel-Weil formula to the doubling integrals of Piatetski-Shapiro and Rallis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00657-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove a formula, realizing certain residual Eisenstein series on symplectic groups as regularized kernel integrals. These Eisenstein series, as well as the kernel integrals, are attached to Speh representations. This forms an initial step to a new type of a regularized Siegel-Weil formula that we propose. This new formula bears the same relation to the generalized doubling integrals of Cai, Friedberg, Ginzburg and Kaplan, as does the regularized Siegel-Weil formula to the doubling integrals of Piatetski-Shapiro and Rallis.

一种新的正规化西格尔-韦尔公式。第一部分
在本文中,我们证明了一个公式,将交映群上的某些残余爱森斯坦级数实现为正则化的内核积分。这些爱森斯坦级数以及核积分都附在 Speh 表示上。这构成了我们提出的新型正则化西格尔-韦尔公式的第一步。这个新公式与蔡氏、弗里德伯格、金兹伯格和卡普兰的广义倍积分有着相同的关系,就像正规化西格尔-韦尔公式与皮亚特斯基-沙皮罗和拉利斯的倍积分一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信