D A Kurakina, M Yu Kirillin, A V Khilov, V V Perekatova
{"title":"Machine-learning-based mapping of blood oxygen saturation from dual-wavelength optoacoustic measurements","authors":"D A Kurakina, M Yu Kirillin, A V Khilov, V V Perekatova","doi":"10.1088/1612-202x/ad1aa4","DOIUrl":null,"url":null,"abstract":"We developed a novel machine-learning-based algorithm based on a gradient boosting regressor for three-dimensional pixel-by-pixel mapping of blood oxygen saturation based on dual-wavelength optoacoustic data. Algorithm training was performed on <italic toggle=\"yes\">in silico</italic> data produced from Monte-Carlo-generated absorbed light energy distributions in tissue-like vascularized media for probing wavelengths of 532 and 1064 nm and the empirical instrumental function of the optoacoustic imaging setup with further validation of the independent <italic toggle=\"yes\">in silico</italic> data. <italic toggle=\"yes\">In vivo</italic> optoacoustic data for rabbit-ear vasculature was employed as a testing dataset. The developed algorithm allowed <italic toggle=\"yes\">in vivo</italic> blood oxygen saturation mapping and showed clear differences in blood oxygen saturation values in veins at 15 °C and 43 °C due to functional arteriovenous anastomoses. These results indicated that dual-wavelength optoacoustic imaging could serve as a cost-effective alternative to complicated multiwavelength quantitative optoacoustic imaging.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad1aa4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a novel machine-learning-based algorithm based on a gradient boosting regressor for three-dimensional pixel-by-pixel mapping of blood oxygen saturation based on dual-wavelength optoacoustic data. Algorithm training was performed on in silico data produced from Monte-Carlo-generated absorbed light energy distributions in tissue-like vascularized media for probing wavelengths of 532 and 1064 nm and the empirical instrumental function of the optoacoustic imaging setup with further validation of the independent in silico data. In vivo optoacoustic data for rabbit-ear vasculature was employed as a testing dataset. The developed algorithm allowed in vivo blood oxygen saturation mapping and showed clear differences in blood oxygen saturation values in veins at 15 °C and 43 °C due to functional arteriovenous anastomoses. These results indicated that dual-wavelength optoacoustic imaging could serve as a cost-effective alternative to complicated multiwavelength quantitative optoacoustic imaging.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.