Qiaohui Hu, Roger S. Seymour, Edward P. Snelling, Rod T. Wells
{"title":"Blood flow rate to the femur of extinct kangaroos implies a higher locomotor intensity compared to living hopping macropods","authors":"Qiaohui Hu, Roger S. Seymour, Edward P. Snelling, Rod T. Wells","doi":"10.1007/s10914-023-09701-4","DOIUrl":null,"url":null,"abstract":"<p>The stocky skeletons and post-cranial anatomy of many extinct kangaroos indicate that they might have engaged in varied locomotor behaviors, rather than bipedal hopping, as their primary mode of locomotion. This study investigates support for this idea by estimating femoral bone perfusion, which is a correlate of locomotor intensity, in extinct kangaroos compared to living hopping species. Femur blood flow rates can be estimated from the sizes of nutrient foramina on the femur shaft of living and extinct species, without preservation of soft tissue. Estimated femur blood flow rates among the extinct <i>Macropus</i>, <i>Protemnodon</i> and Sthenurinae (<i>Sthenurus</i>, <i>Simosthenurus</i> and <i>Procoptodon</i>) are not significantly different from one another but are significantly greater than in living hopping macropods after accounting for the effect of body mass, consistent with their purportedly different locomotor style. The giant sthenurines have more robust femora than extrapolated from data of living hopping macropods, possibly due to the larger sthenurines requiring relatively stronger leg bones to support their heavier body weights, especially if loaded onto a single limb during bipedal striding.</p>","PeriodicalId":50158,"journal":{"name":"Journal of Mammalian Evolution","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammalian Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10914-023-09701-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stocky skeletons and post-cranial anatomy of many extinct kangaroos indicate that they might have engaged in varied locomotor behaviors, rather than bipedal hopping, as their primary mode of locomotion. This study investigates support for this idea by estimating femoral bone perfusion, which is a correlate of locomotor intensity, in extinct kangaroos compared to living hopping species. Femur blood flow rates can be estimated from the sizes of nutrient foramina on the femur shaft of living and extinct species, without preservation of soft tissue. Estimated femur blood flow rates among the extinct Macropus, Protemnodon and Sthenurinae (Sthenurus, Simosthenurus and Procoptodon) are not significantly different from one another but are significantly greater than in living hopping macropods after accounting for the effect of body mass, consistent with their purportedly different locomotor style. The giant sthenurines have more robust femora than extrapolated from data of living hopping macropods, possibly due to the larger sthenurines requiring relatively stronger leg bones to support their heavier body weights, especially if loaded onto a single limb during bipedal striding.
期刊介绍:
Journal of Mammalian Evolution is a multidisciplinary forum devoted to studies on the comparative morphology, molecular biology, paleobiology, genetics, developmental and reproductive biology, biogeography, systematics, ethology and ecology, and population dynamics of mammals and the ways that these diverse data can be analyzed for the reconstruction of mammalian evolution. The journal publishes high-quality peer-reviewed original articles and reviews derived from both laboratory and field studies. The journal serves as an international forum to facilitate communication among researchers in the multiple fields that contribute to our understanding of mammalian evolutionary biology.