Y. P. Tsang, C. K. M. Lee, Kening Zhang, C. H. Wu, W. H. Ip
{"title":"On-Chain and Off-Chain Data Management for Blockchain-Internet of Things: A Multi-Agent Deep Reinforcement Learning Approach","authors":"Y. P. Tsang, C. K. M. Lee, Kening Zhang, C. H. Wu, W. H. Ip","doi":"10.1007/s10723-023-09739-x","DOIUrl":null,"url":null,"abstract":"<p>The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things (IoT) and cyber-physical systems, complicating data management in decentralised applications (DApps). Because it is inefficient for blockchain technology to handle large amounts of data, effective on-chain and off-chain data management in peer-to-peer networks and cloud storage has drawn considerable attention. Space reservation is a cost-effective approach to managing cloud storage effectively, contrasting with the demand for additional space in real-time. Furthermore, off-chain data replication in the peer-to-peer network can eliminate single points of failure of DApps. However, recent research has rarely discussed optimising on-chain and off-chain data management in the blockchain-enabled IoT (BIoT) environment. In this study, the BIoT environment is modelled, with cloud storage and blockchain orchestrated over the peer-to-peer network. The asynchronous advantage actor-critic algorithm is applied to exploit intelligent agents with the optimal policy for data packing, space reservation, and data replication to achieve an intelligent data management strategy. The experimental analysis reveals that the proposed scheme demonstrates rapid convergence and superior performance in terms of average total reward compared with other typical schemes, resulting in enhanced scalability, security and reliability of blockchain-IoT networks, leading to an intelligent data management strategy.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"32 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09739-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things (IoT) and cyber-physical systems, complicating data management in decentralised applications (DApps). Because it is inefficient for blockchain technology to handle large amounts of data, effective on-chain and off-chain data management in peer-to-peer networks and cloud storage has drawn considerable attention. Space reservation is a cost-effective approach to managing cloud storage effectively, contrasting with the demand for additional space in real-time. Furthermore, off-chain data replication in the peer-to-peer network can eliminate single points of failure of DApps. However, recent research has rarely discussed optimising on-chain and off-chain data management in the blockchain-enabled IoT (BIoT) environment. In this study, the BIoT environment is modelled, with cloud storage and blockchain orchestrated over the peer-to-peer network. The asynchronous advantage actor-critic algorithm is applied to exploit intelligent agents with the optimal policy for data packing, space reservation, and data replication to achieve an intelligent data management strategy. The experimental analysis reveals that the proposed scheme demonstrates rapid convergence and superior performance in terms of average total reward compared with other typical schemes, resulting in enhanced scalability, security and reliability of blockchain-IoT networks, leading to an intelligent data management strategy.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.