{"title":"Sentiment analysis of twitter data to detect and predict political leniency using natural language processing","authors":"","doi":"10.1007/s10844-024-00842-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper analyses Twitter data to detect the political lean of a profile by extracting and classifying sentiments expressed through tweets. The work utilizes natural language processing, augmented with sentiment analysis algorithms and machine learning techniques, to classify specific keywords. The proposed methodology initially performs data pre-processing, followed by multi-aspect sentiment analysis for computing the sentiment score of the extracted keywords, for precisely classifying users into various clusters based on similarity score with respect to a sample user in each cluster. The proposed technique also predicts the sentiment of a profile towards unknown keywords and gauges the bias of an unidentified user towards political events or social issues. The proposed technique was tested on Twitter dataset with 1.72 million tweets taken from over 10,000 profiles and was able to successfully identify the political leniency of the user profiles with 99% confidence level, and also on a synthetic dataset with 2500 tweets, where the predicted accuracy and F1 score were 0.99 and 0.985 respectively, and 0.97 and 0.975 when neutral users were also considered for classification. The paper could also identify the impact of political decisions on various clusters, by analyzing the shift in the number of users belonging to the different clusters.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"28 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00842-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyses Twitter data to detect the political lean of a profile by extracting and classifying sentiments expressed through tweets. The work utilizes natural language processing, augmented with sentiment analysis algorithms and machine learning techniques, to classify specific keywords. The proposed methodology initially performs data pre-processing, followed by multi-aspect sentiment analysis for computing the sentiment score of the extracted keywords, for precisely classifying users into various clusters based on similarity score with respect to a sample user in each cluster. The proposed technique also predicts the sentiment of a profile towards unknown keywords and gauges the bias of an unidentified user towards political events or social issues. The proposed technique was tested on Twitter dataset with 1.72 million tweets taken from over 10,000 profiles and was able to successfully identify the political leniency of the user profiles with 99% confidence level, and also on a synthetic dataset with 2500 tweets, where the predicted accuracy and F1 score were 0.99 and 0.985 respectively, and 0.97 and 0.975 when neutral users were also considered for classification. The paper could also identify the impact of political decisions on various clusters, by analyzing the shift in the number of users belonging to the different clusters.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.