{"title":"Order theoretical structures in atomic JBW-algebras: disjointness, bands, and centres","authors":"","doi":"10.1007/s11117-023-01024-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Every atomic JBW-algebra is known to be a direct sum of JBW-algebra factors of type I. Extending Kadison’s anti-lattice theorem, we show that each of these factors is a disjointness free anti-lattice. We characterise disjointness, bands, and disjointness preserving bijections with disjointness preserving inverses in direct sums of disjointness free anti-lattices and, therefore, in atomic JBW-algebras. We show that in unital JB-algebras the algebraic centre and the order theoretical centre are isomorphic. Moreover, the order theoretical centre is a Riesz space of multiplication operators. A survey of JBW-algebra factors of type I is included.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-023-01024-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Every atomic JBW-algebra is known to be a direct sum of JBW-algebra factors of type I. Extending Kadison’s anti-lattice theorem, we show that each of these factors is a disjointness free anti-lattice. We characterise disjointness, bands, and disjointness preserving bijections with disjointness preserving inverses in direct sums of disjointness free anti-lattices and, therefore, in atomic JBW-algebras. We show that in unital JB-algebras the algebraic centre and the order theoretical centre are isomorphic. Moreover, the order theoretical centre is a Riesz space of multiplication operators. A survey of JBW-algebra factors of type I is included.