{"title":"On maximum left/right reflectance asymmetry exhibited by a gyrotropic dielectric slab","authors":"Tom G Mackay, Akhlesh Lakhtakia","doi":"10.1088/2399-6528/ad1dc7","DOIUrl":null,"url":null,"abstract":"Gyrotropic dielectric materials, being Lorentz non-reciprocal, exhibit scientifically and technologically interesting reflection asymmetries. On numerically characterizing left/right asymmetries in linear reflectances exhibited by a gyrotropic dielectric slab, we found these asymmetries to be highly sensitive to: (i) the constitutive parameters of the gyrotropic dielectric material, (ii) the thickness of the slab, (iii) the direction of incidence, and (iv) the refractive indexes of the isotropic dielectric materials above and below the slab. In particular, left/right reflectance asymmetries increase as (i) dissipation in the gyrotropic dielectric material decreases and (ii) the anti-symmetric component of the relative permittivity dyadic of that material increases. Generally, the cross-polarized left/right reflectance asymmetry is an order of magnitude smaller than the co-polarized left/right reflectance asymmetries.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad1dc7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gyrotropic dielectric materials, being Lorentz non-reciprocal, exhibit scientifically and technologically interesting reflection asymmetries. On numerically characterizing left/right asymmetries in linear reflectances exhibited by a gyrotropic dielectric slab, we found these asymmetries to be highly sensitive to: (i) the constitutive parameters of the gyrotropic dielectric material, (ii) the thickness of the slab, (iii) the direction of incidence, and (iv) the refractive indexes of the isotropic dielectric materials above and below the slab. In particular, left/right reflectance asymmetries increase as (i) dissipation in the gyrotropic dielectric material decreases and (ii) the anti-symmetric component of the relative permittivity dyadic of that material increases. Generally, the cross-polarized left/right reflectance asymmetry is an order of magnitude smaller than the co-polarized left/right reflectance asymmetries.