A new approach to nonparametric estimation of multivariate spectral density function using basis expansion

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Shirin Nezampour, Alireza Nematollahi, Robert T. Krafty, Mehdi Maadooliat
{"title":"A new approach to nonparametric estimation of multivariate spectral density function using basis expansion","authors":"Shirin Nezampour, Alireza Nematollahi, Robert T. Krafty, Mehdi Maadooliat","doi":"10.1007/s00180-023-01451-4","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a nonparametric method for estimating the spectral density of multivariate stationary time series using basis expansion. A likelihood-based approach is used to fit the model through the minimization of a penalized Whittle negative log-likelihood. Then, a Newton-type algorithm is developed for the computation. In this method, we smooth the Cholesky factors of the multivariate spectral density matrix in a way that the reconstructed estimate based on the smoothed Cholesky components is consistent and positive-definite. In a simulation study, we have illustrated and compared our proposed method with other competitive approaches. Finally, we apply our approach to two real-world problems, Electroencephalogram signals analysis, <span>\\(El\\ Ni\\tilde{n}o\\)</span> Cycle.\n</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01451-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a nonparametric method for estimating the spectral density of multivariate stationary time series using basis expansion. A likelihood-based approach is used to fit the model through the minimization of a penalized Whittle negative log-likelihood. Then, a Newton-type algorithm is developed for the computation. In this method, we smooth the Cholesky factors of the multivariate spectral density matrix in a way that the reconstructed estimate based on the smoothed Cholesky components is consistent and positive-definite. In a simulation study, we have illustrated and compared our proposed method with other competitive approaches. Finally, we apply our approach to two real-world problems, Electroencephalogram signals analysis, \(El\ Ni\tilde{n}o\) Cycle.

Abstract Image

利用基扩展对多元谱密度函数进行非参数估计的新方法
本文开发了一种非参数方法,利用基扩展估计多元静态时间序列的谱密度。本文采用基于似然法的方法,通过最小化惩罚惠特尔负对数似然来拟合模型。然后,为计算开发了一种牛顿型算法。在这种方法中,我们对多元谱密度矩阵的 Cholesky 因子进行平滑处理,使基于平滑 Cholesky 分量的重建估计值具有一致性和正有限性。在模拟研究中,我们对所提出的方法进行了说明,并与其他竞争方法进行了比较。最后,我们将我们的方法应用于两个现实世界的问题:脑电信号分析、(El\ Ni\tilde{n}o\ )循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信