Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marcin Briański, Martin Koutecký, Daniel Král’, Kristýna Pekárková, Felix Schröder
{"title":"Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming","authors":"Marcin Briański, Martin Koutecký, Daniel Král’, Kristýna Pekárková, Felix Schröder","doi":"10.1007/s10107-023-02048-x","DOIUrl":null,"url":null,"abstract":"<p>An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix <i>A</i> and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of <i>A</i>, and when parameterized by the dual tree-depth and the entry complexity of <i>A</i>; both these parameterization imply that <i>A</i> is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the <span>\\(\\ell _1\\)</span>-norm of the Graver basis is bounded by a function of the maximum <span>\\(\\ell _1\\)</span>-norm of a circuit of <i>A</i>. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix <i>A</i> that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the <span>\\(\\ell _1\\)</span>-norm of the Graver basis of the constraint matrix, when parameterized by the <span>\\(\\ell _1\\)</span>-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02048-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the \(\ell _1\)-norm of the Graver basis is bounded by a function of the maximum \(\ell _1\)-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the \(\ell _1\)-norm of the Graver basis of the constraint matrix, when parameterized by the \(\ell _1\)-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

Abstract Image

具有有界格拉弗基和深度参数的矩阵特征及在整数编程中的应用
关于整数编程固定参数可控性的深入研究,主要集中在利用约束矩阵 A 的稀疏性与其格拉弗基元素的规范之间的关系。特别是,当以 A 的原始树深度和输入复杂度为参数时,以及以 A 的对偶树深度和输入复杂度为参数时,整数编程都是固定参数可控的;这两种参数化都意味着 A 是稀疏的,特别是,其非零条目数分别与列数或行数呈线性关系。如果存在将给定矩阵转换为行等效稀疏矩阵的预处理器,我们将对其进行研究,并根据相关列 matroid 的结构特性提供表征稀疏行等效矩阵存在性的结构性结果。特别是,我们的结果意味着格拉弗基的\(\ell _1\)-norm是由A的一个回路的最大\(\ell _1\)-norm的函数限定的。我们利用我们的结果设计了一种参数化算法,如果存在这样一个行等价矩阵,该算法可以构造一个与输入矩阵A行等价的矩阵,该矩阵具有较小的原始/双树深度和入口复杂度。当以约束矩阵的格拉弗基的(\ell _1\)-正态为参数时,当以约束矩阵的回路的(\ell _1\)-正态为参数时,当以与约束矩阵行向等价的矩阵的最小原始树深度和入口复杂度为参数时,以及当以与约束矩阵行向等价的矩阵的最小对偶树深度和入口复杂度为参数时,我们的结果产生了整数编程的参数化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信