Marcin Briański, Martin Koutecký, Daniel Král’, Kristýna Pekárková, Felix Schröder
{"title":"Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming","authors":"Marcin Briański, Martin Koutecký, Daniel Král’, Kristýna Pekárková, Felix Schröder","doi":"10.1007/s10107-023-02048-x","DOIUrl":null,"url":null,"abstract":"<p>An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix <i>A</i> and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of <i>A</i>, and when parameterized by the dual tree-depth and the entry complexity of <i>A</i>; both these parameterization imply that <i>A</i> is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the <span>\\(\\ell _1\\)</span>-norm of the Graver basis is bounded by a function of the maximum <span>\\(\\ell _1\\)</span>-norm of a circuit of <i>A</i>. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix <i>A</i> that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the <span>\\(\\ell _1\\)</span>-norm of the Graver basis of the constraint matrix, when parameterized by the <span>\\(\\ell _1\\)</span>-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02048-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the \(\ell _1\)-norm of the Graver basis is bounded by a function of the maximum \(\ell _1\)-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the \(\ell _1\)-norm of the Graver basis of the constraint matrix, when parameterized by the \(\ell _1\)-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.
关于整数编程固定参数可控性的深入研究,主要集中在利用约束矩阵 A 的稀疏性与其格拉弗基元素的规范之间的关系。特别是,当以 A 的原始树深度和输入复杂度为参数时,以及以 A 的对偶树深度和输入复杂度为参数时,整数编程都是固定参数可控的;这两种参数化都意味着 A 是稀疏的,特别是,其非零条目数分别与列数或行数呈线性关系。如果存在将给定矩阵转换为行等效稀疏矩阵的预处理器,我们将对其进行研究,并根据相关列 matroid 的结构特性提供表征稀疏行等效矩阵存在性的结构性结果。特别是,我们的结果意味着格拉弗基的\(\ell _1\)-norm是由A的一个回路的最大\(\ell _1\)-norm的函数限定的。我们利用我们的结果设计了一种参数化算法,如果存在这样一个行等价矩阵,该算法可以构造一个与输入矩阵A行等价的矩阵,该矩阵具有较小的原始/双树深度和入口复杂度。当以约束矩阵的格拉弗基的(\ell _1\)-正态为参数时,当以约束矩阵的回路的(\ell _1\)-正态为参数时,当以与约束矩阵行向等价的矩阵的最小原始树深度和入口复杂度为参数时,以及当以与约束矩阵行向等价的矩阵的最小对偶树深度和入口复杂度为参数时,我们的结果产生了整数编程的参数化算法。