Hamiltonian learning with real-space impurity tomography in topological moiré superconductors

Maryam Khosravian, Rouven Koch, Jose L Lado
{"title":"Hamiltonian learning with real-space impurity tomography in topological moiré superconductors","authors":"Maryam Khosravian, Rouven Koch, Jose L Lado","doi":"10.1088/2515-7639/ad1c04","DOIUrl":null,"url":null,"abstract":"Extracting Hamiltonian parameters from available experimental data is a challenge in quantum materials. In particular, real-space spectroscopy methods such as scanning tunneling spectroscopy allow probing electronic states with atomic resolution, yet even in those instances extracting the effective Hamiltonian is an open challenge. Here we show that impurity states in modulated systems provide a promising approach to extracting non-trivial Hamiltonian parameters of a quantum material. We show that by combining the real-space spectroscopy of different impurity locations in a moiré topological superconductor, modulations of exchange and superconducting parameters can be inferred via machine learning. We demonstrate our strategy with a physically-inspired harmonic expansion combined with a fully-connected neural network that we benchmark against a conventional convolutional architecture. We show that while both approaches allow extracting exchange modulations, only the former approach allows inferring the features of the superconducting order. Our results demonstrate the potential of machine learning methods to extract Hamiltonian parameters by real-space impurity spectroscopy as local probes of a topological state.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad1c04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting Hamiltonian parameters from available experimental data is a challenge in quantum materials. In particular, real-space spectroscopy methods such as scanning tunneling spectroscopy allow probing electronic states with atomic resolution, yet even in those instances extracting the effective Hamiltonian is an open challenge. Here we show that impurity states in modulated systems provide a promising approach to extracting non-trivial Hamiltonian parameters of a quantum material. We show that by combining the real-space spectroscopy of different impurity locations in a moiré topological superconductor, modulations of exchange and superconducting parameters can be inferred via machine learning. We demonstrate our strategy with a physically-inspired harmonic expansion combined with a fully-connected neural network that we benchmark against a conventional convolutional architecture. We show that while both approaches allow extracting exchange modulations, only the former approach allows inferring the features of the superconducting order. Our results demonstrate the potential of machine learning methods to extract Hamiltonian parameters by real-space impurity spectroscopy as local probes of a topological state.
拓扑莫伊里超导体中的哈密顿学习与实空间杂质断层扫描
从现有实验数据中提取哈密顿参数是量子材料领域的一项挑战。尤其是实空间光谱学方法,如扫描隧道光谱学,可以探测原子分辨率的电子状态,但即使在这些情况下,提取有效哈密顿参数也是一个公开的挑战。在这里,我们展示了调制系统中的杂质态为提取量子材料的非三维哈密顿参数提供了一种可行的方法。我们表明,通过结合摩尔拓扑超导体中不同杂质位置的实空间光谱,可以通过机器学习推断出交换和超导参数的调制。我们用物理启发的谐波扩展结合全连接神经网络来演示我们的策略,并以传统的卷积架构作为基准。我们发现,虽然这两种方法都能提取交换调制,但只有前一种方法能推断出超导阶次的特征。我们的研究结果表明,机器学习方法具有通过实空间杂质光谱提取哈密顿参数的潜力,可作为拓扑状态的局部探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信