Convergence with rates for a Riccati-based discretization of SLQ problems with SPDEs

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Andreas Prohl, Yanqing Wang
{"title":"Convergence with rates for a Riccati-based discretization of SLQ problems with SPDEs","authors":"Andreas Prohl, Yanqing Wang","doi":"10.1093/imanum/drad097","DOIUrl":null,"url":null,"abstract":"We consider a new discretization in space (parameter $h>0$) and time (parameter $\\tau>0$) of a stochastic optimal control problem, where a quadratic functional is minimized subject to a linear stochastic heat equation with linear noise. Its construction is based on the perturbation of a generalized difference Riccati equation to approximate the related feedback law. We prove a convergence rate of almost ${\\mathcal O}(h^{2}+\\tau )$ for its solution, and conclude from it a rate of almost ${\\mathcal O}(h^{2}+\\tau )$ resp. ${\\mathcal O}(h^{2}+\\tau ^{1/2})$ for computable approximations of the optimal state and control with additive resp. multiplicative noise.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a new discretization in space (parameter $h>0$) and time (parameter $\tau>0$) of a stochastic optimal control problem, where a quadratic functional is minimized subject to a linear stochastic heat equation with linear noise. Its construction is based on the perturbation of a generalized difference Riccati equation to approximate the related feedback law. We prove a convergence rate of almost ${\mathcal O}(h^{2}+\tau )$ for its solution, and conclude from it a rate of almost ${\mathcal O}(h^{2}+\tau )$ resp. ${\mathcal O}(h^{2}+\tau ^{1/2})$ for computable approximations of the optimal state and control with additive resp. multiplicative noise.
基于 Riccati 的 SPDE SLQ 问题离散化的收敛率
我们考虑在空间(参数 $h>0$)和时间(参数 $\tau>0$)上对随机最优控制问题进行新的离散化。其构造基于对广义差分里卡提方程的扰动,以近似相关反馈定律。我们证明了其解的收敛速率几乎为 ${\mathcal O}(h^{2}+\tau )$,并由此得出结论,对于具有加法噪声或乘法噪声的最优状态和控制的可计算近似值,收敛速率几乎为 ${\mathcal O}(h^{2}+\tau )$ resp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信