SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning

Lan Yang;Jiaqi Yuan;Xiangmo Zhao;Shan Fang;Zeyu He;Jiahao Zhan;Zhiqiang Hu;Xia Li
{"title":"SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning","authors":"Lan Yang;Jiaqi Yuan;Xiangmo Zhao;Shan Fang;Zeyu He;Jiahao Zhan;Zhiqiang Hu;Xia Li","doi":"10.26599/JICV.2023.9210023","DOIUrl":null,"url":null,"abstract":"With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"6 4","pages":"264-274"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10409210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10409210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing.
SceGAN:基于深度学习的高速公路自动驾驶车辆切入场景生成方法
随着自动驾驶汽车自动化水平的不断提高,在向市场投放自动驾驶汽车之前,必须进行全面而广泛的测试。传统的公共道路和封闭场地测试无法满足高效测试和场景覆盖的要求。因此,基于场景的自动驾驶汽车模拟测试应运而生。许多场景构成了模拟测试的基础。从现有场景库中生成更多场景是一个重大问题。以高速公路上行驶车辆切入相邻车道的场景为例,基于自动编码器和生成式对抗网络(GAN),提出了一种结合变换器捕捉长时间序列特征的方法,称为 SceGAN,用于模拟和生成高速公路上的自动驾驶车辆场景。建立了一个评估系统,利用判别和预测分数分析 SceGAN 的可靠性,并进一步从相似性和覆盖范围方面评估场景生成的效果。实验表明,与 TimeGAN 和 AEGAN 相比,SceGAN 在数据保真度和可用性方面更胜一筹,其相似度分别提高了 27.22% 和 21.39%。当生成的场景从2547个增加到50000个时,覆盖率从79.84%增加到93.98%,表明所提出的方法在生成多种轨迹方面具有很强的泛化能力,为生成测试场景和促进自动驾驶汽车测试提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信