DAPredict: a database for drug action phenotype prediction.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qingkang Meng, Yiyang Cai, Kun Zhou, Fei Xu, Diwei Huo, Hongbo Xie, Meini Yu, Denan Zhang, Xiujie Chen
{"title":"DAPredict: a database for drug action phenotype prediction.","authors":"Qingkang Meng, Yiyang Cai, Kun Zhou, Fei Xu, Diwei Huo, Hongbo Xie, Meini Yu, Denan Zhang, Xiujie Chen","doi":"10.1093/database/baad095","DOIUrl":null,"url":null,"abstract":"<p><p>The phenotypes of drug action, including therapeutic actions and adverse drug reactions (ADRs), are important indicators for evaluating the druggability of new drugs and repositioning the approved drugs. Here, we provide a user-friendly database, DAPredict (http://bio-bigdata.hrbmu.edu.cn/DAPredict), in which our novel original drug action phenotypes prediction algorithm (Yang,J., Zhang,D., Liu,L. et al. (2021) Computational drug repositioning based on the relationships between substructure-indication. Brief. Bioinformatics, 22, bbaa348) was embedded. Our algorithm integrates characteristics of chemical genomics and pharmacogenomics, breaking through the limitations that traditional drug development process based on phenotype cannot analyze the mechanism of drug action. Predicting phenotypes of drug action based on the local active structures of drugs and proteins can achieve more innovative drug discovery across drug categories and simultaneously evaluate drug efficacy and safety, rather than traditional one-by-one evaluation. DAPredict contains 305 981 predicted relationships between 1748 approved drugs and 454 ADRs, 83 117 predicted relationships between 1478 approved drugs and 178 Anatomical Therapeutic Chemicals (ATC). More importantly, DAPredict provides an online prediction tool, which researchers can use to predict the action phenotypic spectrum of more than 110 000 000 compounds (including about 168 000 natural products) and corresponding proteins to analyze their potential effect mechanisms. DAPredict can also help researchers obtain the phenotype-corresponding active structures for structural optimization of new drug candidates, making it easier to evaluate the druggability of new drug candidates and develop more innovative drugs across drug categories. Database URL:  http://bio-bigdata.hrbmu.edu.cn/DAPredict/.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baad095","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The phenotypes of drug action, including therapeutic actions and adverse drug reactions (ADRs), are important indicators for evaluating the druggability of new drugs and repositioning the approved drugs. Here, we provide a user-friendly database, DAPredict (http://bio-bigdata.hrbmu.edu.cn/DAPredict), in which our novel original drug action phenotypes prediction algorithm (Yang,J., Zhang,D., Liu,L. et al. (2021) Computational drug repositioning based on the relationships between substructure-indication. Brief. Bioinformatics, 22, bbaa348) was embedded. Our algorithm integrates characteristics of chemical genomics and pharmacogenomics, breaking through the limitations that traditional drug development process based on phenotype cannot analyze the mechanism of drug action. Predicting phenotypes of drug action based on the local active structures of drugs and proteins can achieve more innovative drug discovery across drug categories and simultaneously evaluate drug efficacy and safety, rather than traditional one-by-one evaluation. DAPredict contains 305 981 predicted relationships between 1748 approved drugs and 454 ADRs, 83 117 predicted relationships between 1478 approved drugs and 178 Anatomical Therapeutic Chemicals (ATC). More importantly, DAPredict provides an online prediction tool, which researchers can use to predict the action phenotypic spectrum of more than 110 000 000 compounds (including about 168 000 natural products) and corresponding proteins to analyze their potential effect mechanisms. DAPredict can also help researchers obtain the phenotype-corresponding active structures for structural optimization of new drug candidates, making it easier to evaluate the druggability of new drug candidates and develop more innovative drugs across drug categories. Database URL:  http://bio-bigdata.hrbmu.edu.cn/DAPredict/.

DAPredict:药物作用表型预测数据库。
药物作用表型,包括治疗作用和药物不良反应(ADRs),是评估新药可药性和已批准药物重新定位的重要指标。在此,我们提供了一个用户友好型数据库 DAPredict (http://bio-bigdata.hrbmu.edu.cn/DAPredict),其中有我们新颖的原创药物作用表型预测算法(Yang,J., Zhang,D., Liu,L. et al. (2021) Computational drug repositioning based on the relationships between substructure-indication.简介。Bioinformatics, 22, bbaa348)被嵌入。我们的算法融合了化学基因组学和药物基因组学的特点,突破了传统药物研发过程中基于表型无法分析药物作用机制的局限。根据药物和蛋白质的局部活性结构预测药物作用的表型,可以实现更多跨药物类别的创新药物发现,并同时评估药物的有效性和安全性,而不是传统的逐一评估。DAPredict 包含 1748 种已批准药物和 454 种药物不良反应之间的 305 981 种预测关系,以及 1478 种已批准药物和 178 种解剖治疗化学品 (ATC) 之间的 83 117 种预测关系。更重要的是,DAPredict 提供了一个在线预测工具,研究人员可利用该工具预测超过 110 000 000 种化合物(包括约 168 000 种天然产品)和相应蛋白质的作用表型谱,从而分析其潜在的作用机制。DAPredict 还可帮助研究人员获得表型对应的活性结构,用于候选新药的结构优化,从而更轻松地评估候选新药的可药性,开发出更多跨药物类别的创新药物。数据库网址:http://bio-bigdata.hrbmu.edu.cn/DAPredict/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信