CPCL: Cross-Modal Prototypical Contrastive Learning for Weakly Supervised Text-based Person Re-Identification

Yanwei Zheng, Xinpeng Zhao, Chuanlin Lan, Xiaowei Zhang, Bowen Huang, Jibin Yang, Dongxiao Yu
{"title":"CPCL: Cross-Modal Prototypical Contrastive Learning for Weakly Supervised Text-based Person Re-Identification","authors":"Yanwei Zheng, Xinpeng Zhao, Chuanlin Lan, Xiaowei Zhang, Bowen Huang, Jibin Yang, Dongxiao Yu","doi":"arxiv-2401.10011","DOIUrl":null,"url":null,"abstract":"Weakly supervised text-based person re-identification (TPRe-ID) seeks to\nretrieve images of a target person using textual descriptions, without relying\non identity annotations and is more challenging and practical. The primary\nchallenge is the intra-class differences, encompassing intra-modal feature\nvariations and cross-modal semantic gaps. Prior works have focused on\ninstance-level samples and ignored prototypical features of each person which\nare intrinsic and invariant. Toward this, we propose a Cross-Modal Prototypical\nContrastive Learning (CPCL) method. In practice, the CPCL introduces the CLIP\nmodel to weakly supervised TPRe-ID for the first time, mapping visual and\ntextual instances into a shared latent space. Subsequently, the proposed\nPrototypical Multi-modal Memory (PMM) module captures associations between\nheterogeneous modalities of image-text pairs belonging to the same person\nthrough the Hybrid Cross-modal Matching (HCM) module in a many-to-many mapping\nfashion. Moreover, the Outlier Pseudo Label Mining (OPLM) module further\ndistinguishes valuable outlier samples from each modality, enhancing the\ncreation of more reliable clusters by mining implicit relationships between\nimage-text pairs. Experimental results demonstrate that our proposed CPCL\nattains state-of-the-art performance on all three public datasets, with a\nsignificant improvement of 11.58%, 8.77% and 5.25% in Rank@1 accuracy on\nCUHK-PEDES, ICFG-PEDES and RSTPReid datasets, respectively. The code is\navailable at https://github.com/codeGallery24/CPCL.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.10011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised text-based person re-identification (TPRe-ID) seeks to retrieve images of a target person using textual descriptions, without relying on identity annotations and is more challenging and practical. The primary challenge is the intra-class differences, encompassing intra-modal feature variations and cross-modal semantic gaps. Prior works have focused on instance-level samples and ignored prototypical features of each person which are intrinsic and invariant. Toward this, we propose a Cross-Modal Prototypical Contrastive Learning (CPCL) method. In practice, the CPCL introduces the CLIP model to weakly supervised TPRe-ID for the first time, mapping visual and textual instances into a shared latent space. Subsequently, the proposed Prototypical Multi-modal Memory (PMM) module captures associations between heterogeneous modalities of image-text pairs belonging to the same person through the Hybrid Cross-modal Matching (HCM) module in a many-to-many mapping fashion. Moreover, the Outlier Pseudo Label Mining (OPLM) module further distinguishes valuable outlier samples from each modality, enhancing the creation of more reliable clusters by mining implicit relationships between image-text pairs. Experimental results demonstrate that our proposed CPCL attains state-of-the-art performance on all three public datasets, with a significant improvement of 11.58%, 8.77% and 5.25% in Rank@1 accuracy on CUHK-PEDES, ICFG-PEDES and RSTPReid datasets, respectively. The code is available at https://github.com/codeGallery24/CPCL.
CPCL:基于弱监督文本的人物再识别跨模式原型对比学习
基于文本的弱监督人物再识别(TPRe-ID)旨在利用文本描述检索目标人物的图像,而不依赖于身份注释,因此更具挑战性和实用性。主要挑战在于类内差异,包括模态内特征变化和跨模态语义差距。之前的工作侧重于实例级样本,忽略了每个人的原型特征,而这些特征是内在不变的。为此,我们提出了一种跨模态原型对比学习(Cross-Modal PrototypicalContrastive Learning,CPCL)方法。在实践中,CPCL 首次将 CLIP 模型引入弱监督 TPRe-ID,将视觉和文本实例映射到一个共享的潜在空间。随后,提出的原型多模态记忆(PMM)模块通过混合跨模态匹配(HCM)模块,以多对多的映射方式捕捉属于同一人的图像-文本对的异构模态之间的关联。此外,离群伪标签挖掘(OPLM)模块进一步从每种模态中区分出有价值的离群样本,通过挖掘图像-文本对之间的隐含关系来增强更可靠聚类的创建。实验结果表明,我们提出的 CPCL 在所有三个公共数据集上都达到了最先进的性能,在 CUHK-PEDES、ICFG-PEDES 和 RSTPReid 数据集上的 Rank@1 准确率分别显著提高了 11.58%、8.77% 和 5.25%。代码见 https://github.com/codeGallery24/CPCL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信