Surface morphology inside the PSR area of lunar polar crater Shoemaker in comparison with that of the sunlit areas

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
A.T. Basilevsky , Yuan Li
{"title":"Surface morphology inside the PSR area of lunar polar crater Shoemaker in comparison with that of the sunlit areas","authors":"A.T. Basilevsky ,&nbsp;Yuan Li","doi":"10.1016/j.pss.2024.105839","DOIUrl":null,"url":null,"abstract":"<div><p><span>Our study is based on a photogeological analysis of the hill-shade images produced from the LOLA<span><span> digital terrain models and on a stereometric analysis of LROC NAC images. Our results demonstrate that surface morphology of the permanently shadowed floor of crater Shoemaker is nearly identical to that of the regularly illuminated mare surface at the Lunokhod-2 working area and the surface of the highland plain of the Apollo-16 landing site, being dominated by populations of craters smaller than 1 km in diameters. Craters on the Shoemaker floor have approximately the same depth-to-diameter ratios as those within the Lunokhod-2 and Apollo-16 areas. The observed surface morphology of the Shoemaker floor is the result of meteorite bombardment like in other areas of the </span>Moon. Within the permanently shadowed surface areas we detected no morphological peculiarities that could result from the absence of the diurnal temperature variations that excludes the temperature-related creep component of the downslope material movement. This probably means that in the areas with regular solar illumination, the role of the downslope movement of debris by thermally induced creep mechanisms is secondary compared to shaking by close and distant </span></span>meteorite impacts<span> and locally by moonquakes.</span></p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"241 ","pages":"Article 105839"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our study is based on a photogeological analysis of the hill-shade images produced from the LOLA digital terrain models and on a stereometric analysis of LROC NAC images. Our results demonstrate that surface morphology of the permanently shadowed floor of crater Shoemaker is nearly identical to that of the regularly illuminated mare surface at the Lunokhod-2 working area and the surface of the highland plain of the Apollo-16 landing site, being dominated by populations of craters smaller than 1 km in diameters. Craters on the Shoemaker floor have approximately the same depth-to-diameter ratios as those within the Lunokhod-2 and Apollo-16 areas. The observed surface morphology of the Shoemaker floor is the result of meteorite bombardment like in other areas of the Moon. Within the permanently shadowed surface areas we detected no morphological peculiarities that could result from the absence of the diurnal temperature variations that excludes the temperature-related creep component of the downslope material movement. This probably means that in the areas with regular solar illumination, the role of the downslope movement of debris by thermally induced creep mechanisms is secondary compared to shaking by close and distant meteorite impacts and locally by moonquakes.

月球极地陨石坑肖梅克(Shoemaker)PSR区域内的地表形态与阳光照射区域的地表形态对比
我们的研究基于对 LOLA 数字地形模型生成的山丘阴影图像进行的摄影地质学分析,以及对 LROC NAC 图像进行的立体测量分析。我们的研究结果表明,Shoemaker环形山永久阴影地面的表面形态与Lunokhod-2工作区和阿波罗16号着陆点高原平原表面的规则照明母岩表面几乎完全相同,主要是直径小于1千米的环形山群。肖梅克地面上的陨石坑深度直径比与卢诺霍德-2 号和阿波罗-16 号区域内的陨石坑深度直径比大致相同。所观察到的肖梅克地面的表面形态是陨石轰击的结果,与月球其他区域的情况一样。在长期被阴影笼罩的地表区域,我们没有发现任何形态特征,这可能是由于没有昼夜温度变化,从而排除了下坡物质运动中与温度有关的蠕变成分。这可能意味着,在有正常太阳光照的地区,与近距离和远距离陨石撞击以及局部月震造成的震动相比,由热引起的蠕变机制造成的碎片下坡运动的作用是次要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planetary and Space Science
Planetary and Space Science 地学天文-天文与天体物理
CiteScore
5.40
自引率
4.20%
发文量
126
审稿时长
15 weeks
期刊介绍: Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered: • Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics • Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system • Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating • Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements • Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation • Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites • Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind • Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations • Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets • History of planetary and space research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信