Cardiac Digital Twin Pipeline for Virtual Therapy Evaluation

Julia Camps, Zhinuo Jenny Wang, Ruben Doste, Maxx Holmes, Brodie Lawson, Jakub Tomek, Kevin Burrage, Alfonso Bueno-Orovio, Blanca Rodriguez
{"title":"Cardiac Digital Twin Pipeline for Virtual Therapy Evaluation","authors":"Julia Camps, Zhinuo Jenny Wang, Ruben Doste, Maxx Holmes, Brodie Lawson, Jakub Tomek, Kevin Burrage, Alfonso Bueno-Orovio, Blanca Rodriguez","doi":"arxiv-2401.10029","DOIUrl":null,"url":null,"abstract":"Cardiac digital twins are computational tools capturing key functional and\nanatomical characteristics of patient hearts for investigating disease\nphenotypes and predicting responses to therapy. When paired with large-scale\ncomputational resources and large clinical datasets, digital twin technology\ncan enable virtual clinical trials on virtual cohorts to fast-track therapy\ndevelopment. Here, we present an automated pipeline for personalising\nventricular anatomy and electrophysiological function based on routinely\nacquired cardiac magnetic resonance (CMR) imaging data and the standard 12-lead\nelectrocardiogram (ECG). Using CMR-based anatomical models, a sequential\nMonte-Carlo approximate Bayesian computational inference method is extended to\ninfer electrical activation and repolarisation characteristics from the ECG.\nFast simulations are conducted with a reaction-Eikonal model, including the\nPurkinje network and biophysically-detailed subcellular ionic current dynamics\nfor repolarisation. For each patient, parameter uncertainty is represented by\ninferring a population of ventricular models rather than a single one, which\nmeans that parameter uncertainty can be propagated to therapy evaluation.\nFurthermore, we have developed techniques for translating from reaction-Eikonal\nto monodomain simulations, which allows more realistic simulations of cardiac\nelectrophysiology. The pipeline is demonstrated in a healthy female subject,\nwhere our inferred reaction-Eikonal models reproduced the patient's ECG with a\nPearson's correlation coefficient of 0.93, and the translated monodomain\nsimulations have a correlation coefficient of 0.89. We then apply the effect of\nDofetilide to the monodomain population of models for this subject and show\ndose-dependent QT and T-peak to T-end prolongations that are in keeping with\nlarge population drug response data.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.10029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an automated pipeline for personalising ventricular anatomy and electrophysiological function based on routinely acquired cardiac magnetic resonance (CMR) imaging data and the standard 12-lead electrocardiogram (ECG). Using CMR-based anatomical models, a sequential Monte-Carlo approximate Bayesian computational inference method is extended to infer electrical activation and repolarisation characteristics from the ECG. Fast simulations are conducted with a reaction-Eikonal model, including the Purkinje network and biophysically-detailed subcellular ionic current dynamics for repolarisation. For each patient, parameter uncertainty is represented by inferring a population of ventricular models rather than a single one, which means that parameter uncertainty can be propagated to therapy evaluation. Furthermore, we have developed techniques for translating from reaction-Eikonal to monodomain simulations, which allows more realistic simulations of cardiac electrophysiology. The pipeline is demonstrated in a healthy female subject, where our inferred reaction-Eikonal models reproduced the patient's ECG with a Pearson's correlation coefficient of 0.93, and the translated monodomain simulations have a correlation coefficient of 0.89. We then apply the effect of Dofetilide to the monodomain population of models for this subject and show dose-dependent QT and T-peak to T-end prolongations that are in keeping with large population drug response data.
用于虚拟疗法评估的心脏数字孪生管道
心脏数字孪生是捕捉患者心脏关键功能和解剖特征的计算工具,用于研究疾病表型和预测治疗反应。如果与大规模计算资源和大型临床数据集搭配使用,数字孪生技术就能在虚拟队列中进行虚拟临床试验,从而快速开发疗法。在这里,我们介绍了一种基于常规获取的心脏磁共振(CMR)成像数据和标准 12 导联心电图(ECG)的个性化心室解剖和电生理功能的自动化管道。利用基于 CMR 的解剖模型,将顺序蒙特卡洛近似贝叶斯计算推断方法扩展到从心电图推断电激活和复极化特征。快速模拟采用了反应-Eikonal 模型,包括浦肯野网络和生物物理上详细的亚细胞离子电流动态复极化。此外,我们还开发了从反应-Eikonal 到单域模拟的转换技术,从而可以对心脏电生理进行更真实的模拟。我们在一名健康女性受试者身上演示了这一管道,我们推断出的反应-Eikonal 模型再现了患者的心电图,皮尔逊相关系数为 0.93,转换后的单域模拟相关系数为 0.89。然后,我们将多非利特的效应应用到该受试者的单域模型群体中,结果显示了剂量依赖性 QT 和 T 峰至 T 端延长,这与大量群体药物反应数据相符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信