Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. V. Matseiko, I. V. Kharuk
{"title":"Application of Machine Learning Methods in Baikal-GVD: Background Noise Rejection and Selection of Neutrino-Induced Events","authors":"A. V. Matseiko,&nbsp;I. V. Kharuk","doi":"10.3103/S0027134923070226","DOIUrl":null,"url":null,"abstract":"<p>Baikal-GVD is a large (<span>\\(\\sim\\)</span>1 km<span>\\({}^{3}\\)</span>) underwater neutrino telescope located in Lake Baikal, Russia. In this report, we present two machine learning techniques developed for its data analysis. First, we introduce a neural network for an efficient rejection of noise hits, emerging due to natural water luminescence. Second, we develop a neural network for distinguishing muon- and neutrino-induced events. By choosing an appropriate classification threshold, we preserve <span>\\(90\\%\\)</span> of neutrino-induced events, while muon-induced events are suppressed by a factor of <span>\\(10^{-6}\\)</span>. Both of the developed neural networks employ the causal structure of events and surpass the precision of standard algorithmic approaches.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S71 - S79"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070226","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Baikal-GVD is a large (\(\sim\)1 km\({}^{3}\)) underwater neutrino telescope located in Lake Baikal, Russia. In this report, we present two machine learning techniques developed for its data analysis. First, we introduce a neural network for an efficient rejection of noise hits, emerging due to natural water luminescence. Second, we develop a neural network for distinguishing muon- and neutrino-induced events. By choosing an appropriate classification threshold, we preserve \(90\%\) of neutrino-induced events, while muon-induced events are suppressed by a factor of \(10^{-6}\). Both of the developed neural networks employ the causal structure of events and surpass the precision of standard algorithmic approaches.

Abstract Image

Abstract Image

机器学习方法在贝加尔-GVD 中的应用:背景噪声剔除和中微子诱发事件的选择
摘要贝加尔-GVD是位于俄罗斯贝加尔湖的一个大型(\(\sim\)1 km\({}^{3}\) )水下中微子望远镜。在本报告中,我们介绍了为其数据分析而开发的两种机器学习技术。首先,我们引入了一个神经网络,用于有效地剔除因自然水发光而产生的噪声。其次,我们开发了一种用于区分μ介子和中微子诱发事件的神经网络。通过选择一个合适的分类阈值,我们保留了(90%)中微子诱导事件,而μ介子诱导事件则被抑制了(10^{-6}\)倍。所开发的两种神经网络都采用了事件的因果结构,并超越了标准算法方法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信