{"title":"VesNet: a Vessel Network for Jointly Learning Route Pattern and Future Trajectory","authors":"Fenyu Jiang, Huandong Wang, Yong Li","doi":"10.1145/3639370","DOIUrl":null,"url":null,"abstract":"<p>Vessel trajectory prediction is the key to maritime applications such as traffic surveillance, collision avoidance, anomaly detection, etc. Making predictions more precisely requires a better understanding of the moving trend for a particular vessel since the movement is affected by multiple factors like marine environment, vessel type, and vessel behavior. In this paper, we propose a model named VesNet, based on the attentional seq2seq framework, to predict vessel future movement sequence by observing the current trajectory. Firstly, we extract the route patterns from the raw AIS data during preprocessing. Then, we design a multi-task learning structure to learn how to implement route pattern classification and vessel trajectory prediction simultaneously. By comparing with representative baseline models, we find that our VesNet has the best performance in terms of long-term prediction precision. Additionally, VesNet can recognize the route pattern by capturing the implicit moving characteristics. The experimental results prove that the proposed multi-task learning assists the vessel trajectory prediction mission.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639370","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vessel trajectory prediction is the key to maritime applications such as traffic surveillance, collision avoidance, anomaly detection, etc. Making predictions more precisely requires a better understanding of the moving trend for a particular vessel since the movement is affected by multiple factors like marine environment, vessel type, and vessel behavior. In this paper, we propose a model named VesNet, based on the attentional seq2seq framework, to predict vessel future movement sequence by observing the current trajectory. Firstly, we extract the route patterns from the raw AIS data during preprocessing. Then, we design a multi-task learning structure to learn how to implement route pattern classification and vessel trajectory prediction simultaneously. By comparing with representative baseline models, we find that our VesNet has the best performance in terms of long-term prediction precision. Additionally, VesNet can recognize the route pattern by capturing the implicit moving characteristics. The experimental results prove that the proposed multi-task learning assists the vessel trajectory prediction mission.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.