On the adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes

Pub Date : 2024-01-18 DOI:10.1016/j.jspi.2024.106145
Daniela De Canditiis, Giovanni Luca Torrisi
{"title":"On the adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes","authors":"Daniela De Canditiis,&nbsp;Giovanni Luca Torrisi","doi":"10.1016/j.jspi.2024.106145","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the consistency and the rate of convergence of the adaptive Lasso estimator for the parameters of linear AR(p) time series with a white noise which is a strictly stationary and ergodic martingale difference. Roughly speaking, we prove that <span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> If the white noise has a finite second moment, then the adaptive Lasso estimator is almost sure consistent <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span><span> If the white noise has a finite fourth moment, then the error estimate converges to zero with the same rate as the regularizing parameters of the adaptive Lasso estimator. Such theoretical findings are applied to estimate the parameters of INAR(p) time series and to estimate the fertility function of Hawkes processes. The results are validated by some numerical simulations, which show that the adaptive Lasso estimator allows for a better balancing between bias and variance with respect to the Conditional Least Square estimator and the classical Lasso estimator.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the consistency and the rate of convergence of the adaptive Lasso estimator for the parameters of linear AR(p) time series with a white noise which is a strictly stationary and ergodic martingale difference. Roughly speaking, we prove that (i) If the white noise has a finite second moment, then the adaptive Lasso estimator is almost sure consistent (ii) If the white noise has a finite fourth moment, then the error estimate converges to zero with the same rate as the regularizing parameters of the adaptive Lasso estimator. Such theoretical findings are applied to estimate the parameters of INAR(p) time series and to estimate the fertility function of Hawkes processes. The results are validated by some numerical simulations, which show that the adaptive Lasso estimator allows for a better balancing between bias and variance with respect to the Conditional Least Square estimator and the classical Lasso estimator.

分享
查看原文
关于 AR(p)时间序列的自适应套索估计器及其在 INAR(p)和霍克斯过程中的应用
我们研究了线性 AR(p)时间序列参数的自适应拉索估计器的一致性和收敛率,该时间序列的白噪声是严格静止和遍历的马氏差。粗略地说,我们证明:(i) 如果白噪声具有有限的第二矩,那么自适应拉索估计器几乎肯定是一致的;(ii) 如果白噪声具有有限的第四矩,那么误差估计以与自适应拉索估计器正则化参数相同的速率收敛为零。这些理论发现被应用于 INAR(p)时间序列参数的估计和霍克斯过程生育函数的估计。一些数值模拟验证了这些结果,结果表明,相对于条件最小平方估计器和经典拉索估计器,自适应拉索估计器能更好地平衡偏差和方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信