Interaction of Tungsten-Containing Mineral Raw Materials with a Mixture of Ammonium Bifluoride and Sulfate

IF 0.7 4区 工程技术 Q4 ENGINEERING, CHEMICAL
M. A. Medkov, G. F. Krysenko, D. G. Epov, E. E. Dmitrieva, E. B. Merkulov
{"title":"Interaction of Tungsten-Containing Mineral Raw Materials with a Mixture of Ammonium Bifluoride and Sulfate","authors":"M. A. Medkov, G. F. Krysenko, D. G. Epov, E. E. Dmitrieva, E. B. Merkulov","doi":"10.1134/s0040579523320039","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The interaction of tungsten mineral raw materials with a mixture of NH<sub>4</sub>HF<sub>2</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> upon heating was studied. It was determined that, first, at temperatures up to 200°C, the incoming components are fluorinated to form complex and simple fluorides. A further increase in temperature is accompanied by the decomposition of ammonium sulfate to form NH<sub>4</sub>HSO<sub>4</sub>, which leads to the conversion of fluorides into sulfates and of the tungsten ammonium fluoride complex into tungstic acid H<sub>2</sub>WO<sub>4</sub>. It was shown that water leaching of the product of the decomposition of tungsten-containing mineral raw materials with a mixture of NH<sub>4</sub>HF<sub>2</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> makes it possible to extract tungsten from mineral raw materials in the form of the commercial product WO<sub>3</sub>.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0040579523320039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of tungsten mineral raw materials with a mixture of NH4HF2 and (NH4)2SO4 upon heating was studied. It was determined that, first, at temperatures up to 200°C, the incoming components are fluorinated to form complex and simple fluorides. A further increase in temperature is accompanied by the decomposition of ammonium sulfate to form NH4HSO4, which leads to the conversion of fluorides into sulfates and of the tungsten ammonium fluoride complex into tungstic acid H2WO4. It was shown that water leaching of the product of the decomposition of tungsten-containing mineral raw materials with a mixture of NH4HF2 and (NH4)2SO4 makes it possible to extract tungsten from mineral raw materials in the form of the commercial product WO3.

Abstract Image

含钨矿物原料与氟化氢铵和硫酸盐混合物的相互作用
摘要 研究了钨矿物原料在加热时与 NH4HF2 和 (NH4)2SO4 混合物的相互作用。研究发现,首先,在温度不超过 200°C 时,进入的成分会氟化,形成复杂和简单的氟化物。温度进一步升高,硫酸铵分解形成 NH4HSO4,氟化物转化为硫酸盐,氟化钨铵复合物转化为钨酸 H2WO4。研究表明,用 NH4HF2 和 (NH4)2SO4 的混合物对含钨矿物原料的分解产物进行水浸,可从矿物原料中提取商品 WO3 形式的钨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
70
审稿时长
24 months
期刊介绍: Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信