GILBERT langat, Beiji Zou, Xiaoyan Kui, Kevin Njagi
{"title":"Efficient segmentation model using MRI images and deep learning Techniques for Multiple Sclerosis Classification","authors":"GILBERT langat, Beiji Zou, Xiaoyan Kui, Kevin Njagi","doi":"10.1615/intjmultcompeng.2023050387","DOIUrl":null,"url":null,"abstract":"The segmentation models employing deep learning offer successful outcomes over multiple medical image complex data resources and public data resources important for huge pathologies. During the identification of multiple sclerosis, the observation of entire tumors from the Magnetic Resonance Imaging (MRI) sequence is complex. Furthermore, it is necessary to identify the small tumors from the pictures in the prognosis phase to offer good treatment. The deep learning-assisted identification models solve the issue of the imbalance data and the false positive results are more in the conventional models. Besides, these methodologies offer a good tradeoff between the precision measure and recall measure. Thus, the latest deep learning-assisted MRI image segmentation and categorization model is developed to detect multiple sclerosis at the initial stage. Here, the MRI pictures are initially gathered from traditional online databases. The gathered images are directly given to the image segmentation process, where the Multi-scale Adaptive TransResunet++ (MSAT) is adopted to perform the lesion segmentation appropriately. The attributes present in the MSAT are optimized with the support of the developed Random Opposition of Cicada Swarm Optimization (ROCSO). Then, the segmented pictures are subjected to the categorization process, where the Hybrid and Dilated Convolution-based Adaptive Residual Attention Network (HDCARAN) is utilized to categorize the lesions from the MRI images very effectively to detect the multiple sclerosis of patients. Here, the attributes present within the HDCARAN are tuned via the same ROCSO. The implementation results are analyzed through the previously dev","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023050387","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation models employing deep learning offer successful outcomes over multiple medical image complex data resources and public data resources important for huge pathologies. During the identification of multiple sclerosis, the observation of entire tumors from the Magnetic Resonance Imaging (MRI) sequence is complex. Furthermore, it is necessary to identify the small tumors from the pictures in the prognosis phase to offer good treatment. The deep learning-assisted identification models solve the issue of the imbalance data and the false positive results are more in the conventional models. Besides, these methodologies offer a good tradeoff between the precision measure and recall measure. Thus, the latest deep learning-assisted MRI image segmentation and categorization model is developed to detect multiple sclerosis at the initial stage. Here, the MRI pictures are initially gathered from traditional online databases. The gathered images are directly given to the image segmentation process, where the Multi-scale Adaptive TransResunet++ (MSAT) is adopted to perform the lesion segmentation appropriately. The attributes present in the MSAT are optimized with the support of the developed Random Opposition of Cicada Swarm Optimization (ROCSO). Then, the segmented pictures are subjected to the categorization process, where the Hybrid and Dilated Convolution-based Adaptive Residual Attention Network (HDCARAN) is utilized to categorize the lesions from the MRI images very effectively to detect the multiple sclerosis of patients. Here, the attributes present within the HDCARAN are tuned via the same ROCSO. The implementation results are analyzed through the previously dev
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.