Combinatorial constructions of repairable ramp schemes

Jinghui Zhao, Xiuling Shan, Zihong Tian
{"title":"Combinatorial constructions of repairable ramp schemes","authors":"Jinghui Zhao, Xiuling Shan, Zihong Tian","doi":"10.1007/s12095-024-00695-1","DOIUrl":null,"url":null,"abstract":"<p>A repairable ramp scheme is a ramp scheme in which a player can securely reconstruct a lost share with the help from a subset of players. This will take place without the participation of the dealer who set up the scheme. The repairing protocol should not compromise the security of the ramp scheme. Distribution designs were introduced by Stinson and Wei (Des. Codes Cryptogr. 86, 195–210 2018) and can be used to construct repairable ramp schemes. In this paper, we first give the definitions of a <span>\\(\\varvec{(\\tau _{1},\\tau _{2},l_{1},l_{2})}\\)</span>-distribution design and a repairable ramp scheme. And we use anti-Pasch Steiner triple systems as distribution designs to construct repairable ramp schemes. We determine the existence of an anti-Pasch Steiner triple system (QFSTS<span>\\(\\varvec{(v)}\\)</span>) with a minimum basic repairing set for <span>\\(\\varvec{v\\equiv 1,3\\pmod 6}\\)</span>, <span>\\(\\varvec{v\\geqslant 9}\\)</span> and <span>\\(\\varvec{v\\ne 13}\\)</span>. Then we obtain a <span>\\(\\varvec{(2,4,n,3)}\\)</span>-repairable ramp scheme containing <span>\\(\\varvec{n}\\)</span> players with <span>\\(\\varvec{\\lceil \\frac{2v}{3}\\rceil \\leqslant n\\leqslant \\frac{v(v-1)}{6}}\\)</span>.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00695-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A repairable ramp scheme is a ramp scheme in which a player can securely reconstruct a lost share with the help from a subset of players. This will take place without the participation of the dealer who set up the scheme. The repairing protocol should not compromise the security of the ramp scheme. Distribution designs were introduced by Stinson and Wei (Des. Codes Cryptogr. 86, 195–210 2018) and can be used to construct repairable ramp schemes. In this paper, we first give the definitions of a \(\varvec{(\tau _{1},\tau _{2},l_{1},l_{2})}\)-distribution design and a repairable ramp scheme. And we use anti-Pasch Steiner triple systems as distribution designs to construct repairable ramp schemes. We determine the existence of an anti-Pasch Steiner triple system (QFSTS\(\varvec{(v)}\)) with a minimum basic repairing set for \(\varvec{v\equiv 1,3\pmod 6}\), \(\varvec{v\geqslant 9}\) and \(\varvec{v\ne 13}\). Then we obtain a \(\varvec{(2,4,n,3)}\)-repairable ramp scheme containing \(\varvec{n}\) players with \(\varvec{\lceil \frac{2v}{3}\rceil \leqslant n\leqslant \frac{v(v-1)}{6}}\).

Abstract Image

可修复斜坡方案的组合构造
可修复斜坡计划是一种斜坡计划,在这种计划中,玩家可以在子集玩家的帮助下安全地重建丢失的份额。这将在没有设立该方案的庄家参与的情况下进行。修复协议不应损害斜坡方案的安全性。分配设计由 Stinson 和 Wei(Des. Codes Cryptogr.本文首先给出了分布设计和可修复斜坡方案的定义。我们使用反帕希-斯坦纳三重系统作为分布设计来构建可修复斜坡方案。我们确定了一个反帕施-斯坦纳三重系统(QFSTS/(\varvec{(v)}\)的存在,它对\(\varvec{v\equiv 1,3\pmod 6}\)、\(\varvec{v\geqslant 9}\)和\(\varvec{v\ne 13}\)具有最小基本修复集。)然后我们会得到一个可修复的斜坡方案,这个方案包含了一个有(\varvec{(2,4,n,3)}{6}\(\varvec{лceil \frac{2v}{3}\rceil \leqslant n\leqslant \frac{v(v-1)}{6}\)的(\varvec{(2,4,n,3)}{n}\)棋手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信